USER

" ulZ

NOTES

FEATURES
CHeap RAM (32K)

650X REGISTER SAVE & RESTORE

TELEPHONE DIALER

J. C. WILLIAMS
J. GREEN
M. KANTROWITZ

LANGUAGE LAB 9
Basic
ForTH
FocaL
Tiny Basic
ASSEMBLER
AIM INFO 18
WARNING ABOUT PRINTER PAPER LEo ScaNLON
ReaDING KIM CASSETTES D.R.
Erroms For AIM D.R.
AIM User 1/0 LARRY GOGA
Memory TEST LARRY G0GA
KIMSI. S100 20
KIMSI Mop JoHn R, CaMPBELL
65XX CHIP FAMILY STUFF 22
CPU Bue He1inz ScHILLING
6522 Data SHEET CORRECT!IONS Ep1ToR
ExTenpinNg TIMER RANGE Cass LEWART
SYM & AIM Timer LocaTions MarviIN DeJone
Use oF 6502 RDY Line ConrAD BoISVERT
READERS COMMENTS 25
MUSIC
Mops To MTU Music SoFTwARE Bruce Nazarian
INTERFACE 26

SIMPLE INTERFACE

Cass LEWART

EDITORTIAL

BACK ISSUES TO BE AVAILABLE

We're now in the process of reprinting issues
1-6 of the 'NOTES' All pertinent information from
Volume 1 (including the complimentary issue) will
be combined into one giant issue and organized
according to subject matter. You'll be able to
find information alot faster and It'l be easier to
read!

Am not sure of the price yet. That info will

be available in the next issue. Volume 2 (issues
7-12) will be next.

6502 SYSTEM CENTERFOLD?

Well, not quite, but 1 would like to start
featuring one 6502 system in each issue. If you'd
like to have your system featured in the 'NOTES',
send in a black & white glossy photograph of your
machine (you can be in the picture also) and a few
paragraphs describing what you have, what kind of
software you use , and what you do with your ma-
chine. The picture should be well focused etc.

1 always enjoy hearing about your system and
I'm sure other readers would also., Let's hear
from you!!!

SUBMITTING ARTICLES

Since all articles will be retyped, they need
only be readable. Typing it would, of course,
guarantee readability., Program listings, on the
other hand, may not be reyped so, if at all pos-
sible, use white paper and a fresh ribbon on your
printer. If there's no way you can generate an
original source listing, then a handwritten source
listing with MOS mnemonics, and labels of up to
six characters, (don't forget to use labels when
referencing zero page locations) will be satis-
factory., Comments should be preceded by a semicol-
on.,

This will make it easy for me to assemble your
program for publication. Disassembler output is
not very satisfactory except when heavily commented,
labeled and all zero page registers identified by
name.

Perhaps the best way to submit program source
listings would be to send a cassette of the assem-
bler source file and I can then assemble it and
run a listing on my Decwriter. I can assemble
source files from either the Micro-ade assembler
(Peter Jennings) or thc MOS/ARESCO/HDE assemblers.
If you send a S.A.S.E., I'll return your cassettes.
It would be wise to dump two copies of the file to
casgsette just in case,

I can read most of the Hypertape-recorded cas-
settes I receive once I adjust the azimuth of the
cassette head for the higher audio level while
reading the program. I think this head adjustment
problem has probably accounted for most of the tape
interchange problems I've been aware of. The ma-
chines I use to make the newsletter cassettes have
been adjusted as close as possible and 30 seconds
of synch characters precede the program for set-
ting up your equipment. So far, we have not had
any cassettes returned, so we must be doing some-
thing right.

BUGS IN ISSUE #14

INSIDE COVER: The correct price for 1-6 or 7-12
from Mark Kantrowitz is $7.00 add $3.00
for airmail overseas.

PAGE 4: (top of the page) the rest of the BANNNER
listing should run from $2600-$28FF and
not $3400-$36FF,

PAGE 15 : the short program in the NEW COMMAND FOR
BASIC should read: [

1000 PRINT: PRINT "Enter space when ready t
“;: GET a$: IF A$<LP>™ " THEN 1000, i

FRCM SYNERTEK

Apparently, SYNERTEK has rewritten the SYM 1
monitor to clean up the problems they had reading
cagssettes and a few other minor glitches. No word
yet on the price for retrofit but 1 should have
that info by next issue.

The foffowing notice 4is being reprinted faom
Vol IV No 5 of the CACHE REGISTER. 1 don't know
how true 41 4s - but 4% pays 1o Look before you
feap.

WORLD POWER SYSTEMS: FRAUD!!!

It appears that World Power Systems is a carefully
instigated fraud for ripping off computer hobbyists
and small businesses. One Chicago business is out
of luck for $4500. The scenario reads like a TV
police show, complete with prison escape, aliases,
etc.

1 guess it's appropriate to repeat the advice that

80 many have given before: if you don't know the

integrety of the company, do all your business in

person or via C.0.D, Better yet, deal with local, ‘
reputable dealers, like the computer stores; or

those who advertise in the CACHE Register, like

Lloyd Smith of Smith Computer Systems. (With his

good prices, it's a shame he hagn't been getting

more business from his ads, and has had to cut

them back.)

Ward Christensen

WE'RE GOING TO SUPPORT QSL!

From all indications, there are alot of frus-
trated O0SI users out in the field.

1've looked over the C-1P and C2-4P and they
seem like reasonable machines for the money. The
'USER NOTES' will try to fill in where the docu-
mentation leaves off so we really have our work cut
out for us.

Pass the word along to any OSI users you know
of.

We've already got a few goodies to pass along.
For the first installment, see the comments section
in this issue. KIM, of course, will still get the
bulk of our suonart.

CHEAP RAM!!

Joe was kind enough to Lend me one of his dy-
namic RAM cards for a firsthand opporiunity fo. see
how wellf it worked. 1 cycled the board for several
hourd with a coupfe of the dynamic memory ledts
contained in the HDE Comprehensive Memory Tedt
[CMT) package. The board performed ffawfesdsly!

As for as 1 can tell, this RAM card should be
useable with other 6502 machines unclfuding 0SI, and
PET besides the KIM, SYM and AIM.

ERIC

A 32K DYNAMIC RAM BOARD FOR THE KIM-4 BUS

by J. C. Williams
55 Holcomb St.
Simsbury, Ct 06070

Two years ago, 16K x 1 dynamic memory chips
such as Mostek's 4116 sold for about $40 each;
they're now less than $10 each and available from
many semiconductor manufacturers. These prices
mean that a 32K board can be built for about $200.
In addition, the board will draw less than 200 mA
from the +8 Volt power supply, 200 mA from the +15
supply and 5 mA from the -15 supply. Memories for
the APPLE I1 and TRS-80 microcomputers are based
on these devices, as are many mimicomputer memor-
ies; in spite of old rumors, dynamic memories work
reliably.

The circuit of figures 1A and 1B is a 32K byte
(16K if only 8 memory chips are installed) memory
for the KIM-4 bus which easily fits on a 4%'"x6%"
circuit board. Figure 2 shows the layout used for
one of the prototypes built on a Vector 3662 plug-
board., 1In eight months of constant use with a KIM
1 and KIM-4, no problems of any kind have been en-
countered with this unit. A second unit, built at
the end of 1978, also works well.

It would take a long write-up to explain how
dynamic memories work and this note is about a spe-
cific circuit. Readers who want to learn more de-
tails could start with Lane Hauck's article in the
July, 1978, issue of BYTE and progress to manufact-
verers' data sheets and application notes. Mostek's
1978 Memory Data Book and Degsigner's Guide is es-
pecially useful and has excellent applications in-
formation.

In the circuit of figure 1, memory refreshes
are "hidden" during #1 (B2) of the 65XX processor
cycle, This can be done because although the pro-
cessor puts out address and R/W information during
91, read or write operations are done during #2.
The circuit described "gives" the memory to the
processor during @2 and to the refresh circuit dur-
ing #2. Memory chips used in this way must be fast
enough to function at approximately twice the pro-
cessor clock frequency. Devices with a 200 ns ac-
cess time and a 450 ns cycle time are required for
this circuit if the processor has a 1 MHz clock.

Figure 3 is a timing diagram which shows what
must be done to interface the 4116's (or pin-com-
patable equivilent) to a 1MHz 65XX bus. The bus
provides 82, R/W, RESET, and address information.
During write cycles it provides data and during

read cycles it takes data. The specific bus times
marked on figure 3 were taken from the MOS Tech-
nonology Hardware Manual. The 4116's require a_Row

Address Strobe (RA8), a Column Address Strobe (CE%),
WRITE, and multiplexed address information at spec-
ified times. Figure 3 times were selected for the
most reliable operation using the full time avail-
able during #2. Four types of memory cycles can
occur: 1) Read 2)Write 3)Refresh and 4)Null. Read
or Write cycles occur during #2 if the processor
has addressed a location on the board. Refresh
cycles occur during %2 once every 32 clock cycles
or during every $2 if RESET is low. During Null
cycles no 4116 activity occurs.

_ The circuit of figure 1 implements the timing
uging one CMOS and eleven TTL integrated circuits,
The two 16K X 8 banks of 4116's have address lines
AOD-A6 driven by multiplexers U8-Ull, To eliminate
undershoot on A0-A6, 1.5 k pull-up resistors are
E;éuired. Nand gates U6 and U7 drive the 4116 RAS,
CAS, and WRITE lines. Nand gate U4 and twelve bit
ripple counter U5 produce a REFR signal once ev—
ery 32 clock cycles as well as provide the seven
bit refresh address to be used. A REFRESH signal
is also produced when RESET is low in order to in-
sure proper start-up of some manufacturer's memory
chips. Since Refresh cycles are dependent only on
the existence of a 1MHz @2 signal on the KIM-4 bus,
any hardware controlling the bus must provide such
a signal. One-shot multivibrators Ul and U2 pro-
vide row and column address strobe timing signals
when tri§§g£ed by other signals., Ul2 generates the
BOARD SELECT, UPPER BLOCK SELECT, and ROW ADDRESS
5 and 6 signals by comparing the four most signifi-
cant bits of the KIM-4 address bus with the settings
of the '"starting address” switches. Sections of U3
are used as buffers, delay elements and inverters.

The construction of this circuit is not dif-
ficult, but requires care, planning and some ex-
perience. Layout is important to minimize the
length of lines carrying high speed signals and un-
desirable coupling between lines. A low impedance
ground and power supply distribution are essential
because of the high peak currents drawn by the mem-
ory chips during clocking. Don't skimp on bypass
capacitors and use #20 or larger tinned copper bus-
wire for grounding. The grounding and bypass lay-
out of figure 2 works well, Wire-wrapped connec-
tions are best made with a Vector Electronics Co.
Model 180 "slit and Wrap" tool which enables one to
solder to the leads of resistors, capacitors and
edge connector pads as well as make "daisy chained"
wraps. Once this tool is used, you'll never want
to measure, cut and strip regular wire again.

All parts which attach to the board should be
on hand before any construction is started. The
following sequence may be of help in buidling one
of these boards:

1. Attach wire wrap IC sockets and voltage regu-
lators to board with "five minute" epoxy glue.
Heat sinks are not required,

2. Run the ground bus on the bottom of the board
using #20 or larger tinned copper bus wire.
Start at edge connector pads 1 and A and go a-
round the outside of the board to pads 22 and
Z. Stick in and solder bypass capacitors be-
tween the bus and the proper IC socket pins as
you go to hold the bus wire in place. Complete
the ground network with additional lengths of
bus wire to the “"inner" IC's and install the
remaining bypass capacitors.

3. 1Install the resistors (mounted vertically in
some cases) and remaining capacitors by stick-
ing their leads through the board and soldering

them to the appropriate pins. Cut any uncom-
mitted leads to % for later "slit and wrap"
connection. =--The remaining connections can be

made with "slit and wrap" techniques~ don't for-
get to solder after wrapping round leads.

4. Run the +5, +12 and -5 Volt power supply lines
from the outputs of the respective regulators
to the correct IC pins, bypass capacitor leads
and pull up resistor (+5 Volt only) leads. Al-
so run the +8, +16 and ~16 Volt lines from the
proper edge connector pads to the correct reg-
ulator input pins and bypass capacitors. These
lines may be conveniently run on the board top.
“pPlug in" the board, power it up and check for
correct power and ground connections at every

IC location.

5. Wire the remainder of the circuit in stages
checking between data sheet pinouts, schematics
and drawings to eliminate errors. The stages
could be a)address lines b)control and timing
logic c)data lines and d)row and column address
strobes and WRLITE lines. It is helpful to use
wire with a different color insulation for each

stage.
1

Install all IC's except 4116's and test the
board on a KIM-4 bus, Set the starting address of
the board as desired (for example $2000) and turan
on the power-the system should operate normally.
Load test programs in operatonal memory which will
"exercise" the board.

Read Tesgt

0200 AD 00 20
0203 4C Q0 02

READ LDA $2000
JMP READ

Write Test

0200 8D 00 20
0203 4C 00 02

WRITE STA $2000
JMP WRITE

While one of these programs runs, an oscillo-
scope can be used to check the RAS, TAS and other
signals produced at a memory chip socket in the
selected block. @2 should be used as the 'scope
trigger and displayed on one channel so that the

signal being tested can be compared with it. Ad-
just timing if necessary by changing one-shot tim-
ing resistors. Signals to the other memory block
can be checked by changing the address used in the
test program (for example to $6000). TRAS signals
produced during ¥Z by REFRESH may be observed by
holding RESET low.

Install 4116's and test using the monitor and
a program such as Memory Test by Jim Butterfield in
the First Book of KIM, If trouble~shooting is need-
ed, the type of problem is an indication of what's
wrong, For example, if one bit in one block is
always wrong suspect a bad 4116 or data line wiring.
I1f the errors seem to be random, the 4116's may be
too slow or there may be excessive noise on the
power supply lines., Based on experience with the
prototypes, once the clock timing has been adjusted,
there will be no problems at all.

The author hopes that the availability of large,
low-cost memories will stimulate the development of
software for 65XX systems. Any correspondence on
the memory circuit should be sent to the above ad-

dress,

» FIGURE 1A 32 K RAM BOARD FOR KIM-% BUS s
Vgt
- H
H 1
: " [t !
e L — T L RTTE
19 OARD SELEC q|u3] 12] ThLsed :
415 Y risass [y 15 UI3~018, piad
i s vi2 L RowAB § UPPER BLOCK SEiecT +5
Aty R L eo Row AD.F 1 s
s j" LIS 4o Ul pins 18,6 oT 3 ©
* 5 +5 A4 2 ke uT g e
) pAER | 2,50 pf 16k B2 12k te0gf o L o] racsen CASQ
START NG 23k (5) = V13+U20,pin 1S
Avbaess y 1 30p(' »
$ d vz g v2 VT Ve F7E]
12 1 2 L 7423 2% 4 14123 4 5 03 35
o ! '3 ‘L)sjﬂ 0 s As : (cll). * g E ..Z:’::,,w V2 SUIE, pints
o 3
YL
""v“'i-] Wﬂ hnvwb' 206 N e
& = o bt i3} 741300 ué 8 mg—cﬁ
e @
¢ G} vi Qs 2] qaLses .
GND. i & 74023 UI3wv22, piakt
5 K
ATk R REAAS 741508, RAS1
7] vt -1e% U2(-=V1b ping
RESET RETRELH 0| 4 7913 ABOAESS PAULTIPLERER STATES
[
L 3f cas(e) F1(ADORESS,
o — = cAs s1aE casfs) FIA)
e V4 S 3 1 t column
3 2 L33 2 1] columny
AN) i o ! refresh
4040 b C——— [[[rou
M gn - ---- - @d asih 12
5 S tor pialh pin2 USE #w&H - Puacery CAPT z:/oz,)
of UB=U1Y JA THE ONE-SHoT7 &RCUITS,
Re A5 WRY RIRS RO
REFAESH ADDALSS TO US-eVlL ADORESS SATING SIGNALS ICw
FIGURE 1B 32K RAM BOARD - ADDRESS MULTIPLEXER
LY
s
U3, piaid Ul pim 13 +5 5 (s i N
VS, pad, 0,042 33 cas 1 H L‘\\L
t
s Uki .5k
) 3 '
L] . 13
o Ré RS R R AP [::E 9 ni
& 1¢0 VI3 Upin 3
M REFMESH ADDRELS N unl i
223 g3 P
» FRom US . mEt
! RS — 2 5 5 VI ULB pla 10
= Bl {
From uiz: 3
! ° R 1.5k 3 15k
1 p'a 1, ROW AD, 6 rsom — 2 M 5
' Pim 4, ROW AD. 5 oot iocied R4 vie Z -
Ant e 't’ weans VI3-U1D pail
Ao " -~w“wﬁ:ﬂ .
an " A3 ~— . .5 .5 vi3-Vas patd
ok Wi
0 b >
e 15k 2 15k
)
VL I
R2 —H8 N)
" . 4 reesiss VI3-V38 piné
As N 1__% .
A r R — 45 vi-us gt
A3 '3 |,-x{, [id
A2 3 ey
AL ¢ °L" 15k
Y [L; .
a4 ve vo-vs pns
Tasisy]
UI0UZE pies A ¢ 14 o
be ,! Y ° e Vid,v1? !'m' 2414 :1
g; :; — yig eyt ¢ LRALd p2
D3 12 RNOD PR S I ST
o4 f BI DIRECTIONAL DATA LINES JRNRTTERN 2 LI ikt L SO 1S
2 \ TR L R 05
2 b5 to ;. 8 Yl su22 pies 24 1s D6
be 9 N L4 Yideua) elan 244
ny R X

FIGURE 2-PARTS LAYOUT , GROUND BUS

‘ VECTOR 3662 PROTQTYPE BOARD SHOWN FROM COMPONENT SIDE (Top)

- GROUND BVUS ON BACK
wininininl
E V24 pas a E BANK 1
) 4116 -3
-)
vie V20!
o—

i s
-y P 9
, BANK @

ue
GND 1 24LS153

[alcloYa 1ot o

ue

-16 5 >74L$I53 H

Vi wT

[*E ¥
P T4c5(53

&2 ——
EESTTe

¥4 @

s16 17 F'uuzu raror
-ﬁi
dtaitin
13 add

+8 <2o -u:i-'xhs

e .
GND 22 o]

®

BYPASS CAPRCITORS W DO MOT SUBSTITVTE "L§~ vNITS

O 1 4f,16Volts, Tukulom
o .1 Mf, 12 Velts s Disc Ceramic

‘ FIGURE 3 - TIMING DIAGRAMS - 1 MHa CLOCK

~ ALL TIMES MEASURED RELATIVE To Kim-¢ @2 EDGES

(174 @2 02 02 oz 0z o2 o

wULL READ wvLL AvLL nULL WRITE REFRESH NULL

c

K'M'* ADDRESS BUS X #oart ADDRESS X now - BeARD 40DRESS X BOARD ADPRESS X NON- BOARD ADDAESS
BvsS
SIGNALS RW | /
—4 *‘— » 100 ae
DATA FRM «ifé's 1 DATA FABM uxxm\':“‘"‘"‘j
PATA BVS T I PP Mee]

BOARD \

SELECT [\ [
MEMDRY "WRITE ' \ [
BOARD

PecAr DEPENDS ON
SIGNALS wimeesh l.‘(.:tr SPEED OF Yov O I
YT T wiTy
Fas -“F Ml =
1

xS AD?:;‘:&! ru_’l 2‘.'. \ ’ \ ’

AD-A6 J REFNESH aow | cotvmn REPRESH xow REFRESH row | coLumn REEFRESH Row

Ea

FIGURE 4 - WIRING SKETCH- MEMORY MATRIX

fop view
L,A GROUND BVS soldered connactions ~
4 see nde | |] iw
Ul piait &5 A + (\ T) (') +
ut l"'. 7T A . !]
wi, pinl A \w»__rjm\ﬂg”\ﬂ s, N, o iy = S, 55 2
us, P9 A2 W%ﬁ - QQ‘&QKJ%WM . oo B ¢
uie, pet A4 >j?/”:::::jE::;;:::::EEEEI::::j:::j:::T“* _,A»\\m«mg::j'M"“*w.,NKQZIZ:E;;EW*N\‘ﬂ
us, pin AG I S SN 2 - - S S— FIA 4
we, pin7 A3 . N K D . S ek B ¢
un, "-l\ 1 \ "‘\‘ /" - /“"“”" /"‘”"‘“
L, Lo, Py
) | (-
Y) !
Vo, pin b 4§ e " L(DA) +
- -
- adbress Livas 1r] ¢ 4 4 ;
A0-Ab amitted 1 p 1 3 4] ¢ 4 4 j
from skedeh for ' l/l Ju [4 3 b ¢ [b
vaHr,b-'f 4 ;/ 1 ~— ‘:Q /*E P ‘”"-\‘ (’M\‘
connect to J J/] "4 4 T —— L g r“\\‘
proper Us-dil b b b ¢ 3 T L//—M 4
P.‘-s - : Vi £ I~ ¢ Yoma K L. =N
q a1)
— 3 L1
T [T] [0 &
T s WRITE <+
o o3 n f 3 + (.
Y —othes date B -Ull, piaZ CAS
15 Jines Sollow p \ Ly
similar uil, pn ¥ BoARD MIECY
pattern— ! \ L08
us-wi patt T D D
us piatp >
¥ 15k address line w w7 ue ToTI2 -8
poll-vp registors movat . S 4 —~— T p
vnhu“y with 4op Vome o o
leads connected +o ench W, R ‘ O
other and 4o 45 ~ 02 VPPER BLOCK
+5 cAs SoSERS
\) Ua it Gapinld Wiz, pin 13 poseas RFRAS L
W, pinte
+57 AO—AE)
ASAVE: PHA ;push A value to stack
TYA
650X SAVE AND RESTOR ROUTINES PHA ;push Y value to stack via &
. TXA
PHA ;push X value to stack via A
by Jim Green TSX juse stack pointer
807 Bridge Street LDAX $0103 ; to get A copy
Bethlehem, PA 18018 PHA ;save it also
: LDAX $0101 s;retrieve X value
Copyright, 1979 TAX ; and restore X
Commercial Rights Reserved PLA ;now restore A
These routines save and recover A, Y and X ARESTR: PLA ;pull X value from stack to A
register values. The ability to protect these TAX ;jrestore X
values is particularly useful when they might be . PLA ;pull Y value from stack via A
lost due to modification within, say, a device TAY. ;jrestore Y
routine. In the programs below no additional data PLA ;restore A

memory {(other tham the stack) is required. This
makes it possible to save register contents to any
level of nesting permitted by the size of the a-
vailable stack.

At the outset one should note that the two
subroutines illustrated below, SAVE and RESTOR,
can be replaced with just twenty bytes of code
ASAVE and ARESTR below) which will execute
than a sixth of the time,

(see
less

Having said that, why would anyone want to

know about, much less use, these routines? First,
the exercise in writing or understanding the rou-
tines is interesting, I think. Second, and more
important, a pair of esubroutine calls is easier on
the overburdened mond of the progrmmer than remem-
bering the sequence of the tem lines of code.
{Did I save the Y before the X or vice versa?®l!) A
third possible reason, that of saved program space
would only exist if in excess of 6 call pairs (ie.
a SAVE and a RESTOR) are made to these routines.

The alternative code sequences are:

The interesting aspect of the subroutine code
presented below is that subroutines are used to
perform stack operations, Since the subroutines
themselves use the stack as the place where their
return addresses are saved, it is necessary to move'
some stack bytes around and to do this regardless
of the current value of the stack pointer.

At the beginning of any subroutine, after it
has been called, the state of the stack may be
represented as shown in Figure 1:

..} stack
SP+2 RAH
SP+1 RAL
SP ?7?
Figure 1.

i the saved value of A on the stack before progra
Where RAH and RAL are ﬁh? high and low bytes control drops into the RESTOR routine. TEisgfe:—
of the return address, "777" is the next avail- ture is useful in single byte input routines where
able stack byte3 and SP is the address pointed to we wish to protect the Y and X values but to re-
by the stack pointer. place the old A value with the new input value.

If the operations starting with ASAVE (above)
are now invoked, the stack would appear as shown
in Figure 2a, Notice that the return address is
now hidden and no longer directly available. An
attempt to return from the subroutine at this
point would get lost by returning to the address
equal to Y (as the high byte) and X (as the low).
Clearly, some swaps must be made.

SAVE and RESTOR (or RESTI) may be invoked any-
where in a program subject to the restriction that
each SAVE call be ultimately followed by a RESTOR
(or RESTI) call at the corresponding stack level,
The partial code below illustrates the application
of the routines. Notice that the pair of calls
within SUBROUT are nested within the pair outside
SUBROUT:

To accomplish this, the stack pointer is

JSR AVE R
moved "up" two bytes (remember that stacks work up- S ’/’///"SUB 0UT JSR SAVE
side down). Then RAH and RAL are copied onto the i L
two new locations (Figure 2b.). The entire block ISR SUBROUT‘ g?g RESTOR
of 5 bytes is then shifted "down" (Figure 2c.), and &éé RESTOR
finally the stack pointer is re-established just
"above" the return address. The return address is

now accessable so that after an RTS (Figure 2d.)

i As stated at the outset, these routines will
only the A, Y and X values remain on the stack.

save neither program time nor program space but
they may, in the long run, save a programmer from

The RESTOR routine does essentually the same undue wear and tear. Besides, they were fun to

thing in reverse. One additional wrinkle occurs

.) write.
at RESTI, in which the current value of A replaces
SP+5 RAH SP+5 A peseeomongne SP43 A
SP+4 RAL /Sp+u Y e SP42 Y
SP+3 A /sp+3 X ot SP4 X
SP+2 Y /snz RAH SP 2?2
5P+t X /SP+1 RAL
SP RAH /sp 777
¢
SP 7?7
(a) (b) T (e) (d)
Figure 2. Stack values due to SAVE.
; 658X REGISTER SAVE AND RESTOR ROUTINES
; VERSION #.1, 14 FEB 79
i COPYRIGHT, 1979
H COMMERCIAL RIGHTS RESERVED BY
H J. S. GREEN, COMPUTER SYSTEMS
H 807 BRIDGE STREET
i BETHLEHEM, PA 18018
H (215) 867-0924
' .DEF PGONE=501080 ;START OF PAGE ONE
.LOC Se20@
; SAVE B, Y, & X REGISTER VALUES ON STACK
0200 48 SAVE: PHA ; SAVE A
92081 98 TYR
0202 48 PHA ;SAVE Y
9273 8a TXa
0204 48 PHA ; SAVE X
p205 48 PHA :ADD TWO BYTES TO STACK
9206 48 PHA
9287 BA TSX :USE STACK POINTER TO
g288 BD 87 61 LDAX PGONE+7 H MOVE RETURN ADDRESS
0208 9D 92 01 STAX PGONE+2 ; TO TOP OF STACK
g28e BD 86 91 LDAX PGONE+6
2211 9D 91 @l STAX PGONE+1
0214 b0 04 LDY# 4

#216 BD @85 #1 SAVEl: LDAX PGONE+5 7SHIFT LAST 5 BYTES OF
8219 9D 87 €1 STAX "PGONE+7 : STACK DOWN TWO CELLS
g21c ca DEX ; TO COVER OLD ADDRESS
821D 88 DEY
221E 18 F6 BPL SAVEl ;LOOP TIL 5 DONE
220 68 PLA ;ADJUST POINTER
@221 68 PLA
222 BD 2C 81 LDAX PGONE+$8C ;NOW RESTORE REGISTERS
225 48 PHA 3 ACC
¢226 BD @B #1 LDAX PGONE+$0B
#229 A8 TAY) ;Y REGISTER
#22A BD @a 01 LDAX PGONE+$@A
922D AA TAX iX REGISTER
B22E 68 PLA ;ACC
022F 68 RTS
1
; RESTORE X & Y ONLY
0230 BA RESTI: TSX ;USE STACK POINTER
9231 9D 85 81 STAX PGONE+5 ; TO OVER-RITE OLD A
; RESTORE A, ¥, & X
r
234 48 RESTOR: PHA ;ADD TO STACK
8235 48 PHA
#236 BA TSX ;USE STACK POINTER
8237 AB 04 LDY$ 4
239 BD #3 81 RESTR1: LDAX PGONE+3 ; TO SHIFT LAST 5 BYTES
#23C 9D 81 81 STAX PGONE+1 ; OF STACK UP 2 CELLS
923F E8 INX ;TO MAKE ROOM FOR RETURN
P24 88 DEY : ADDRESS
0241 10 F6 BPL RESTRI ;BR TIL 5 DONE
2243 BA TSX .
244 BD 02 81 LDAX PGONE+2 ;MOVE RETURN ADDRESS
9247 9D 87 @1 STAX PGONE+7
f24A BD 81 01 LDAX PGONE+1
24D 9D @6 @1 STAX PGONE+6
0258 68 PLA ;ADJUST STACK POINTER
@251 68 PLA
@252 68 PLA :+X VALUE
9253 AA TAX
7254 68 PLA ;Y VALUE
p255 A8 TAY
0256 68 PLA ; ACCUMULATOR VALUE
@257 6@ RTS ‘
’
.END

TELEPHONE DIALER

by Mark Kantrowitz
15 Midway Court
Rockaway NJ 07866

This telephone dialer program will dial a tele-~
phone number (of any length) by pressing a single
key on KIM's keypad. The hardware consists of a
7406 inverter, NPN transistor, a couple of resis-
tors and a 12 volt relay (see figure). The switch-
ing end of the relay is connected between the green
wire and the logic box where the green wire was
connected.

Up to 16 different telephone numbers can be
dialed. You must first store the numbers in mem-
ory. Preceeding every telephone number, you must
store an I.D. number., The first I.D. number is
A0 and goes up to AF. Each telephone number con-
sists of one or more bytes. Each byte of the tele-
phone number consists of two digits of the tele=-
phone number. Except when there is an odd number
of digits, in which case a "F" is placed in the
last nybble of the last byte of that particular
telephone number. A "FF" in the phone table in-
dicates the end of the table.

As an example, a typical phone table would
look like this starting im location 0018:

AD 20 16 25 17 19 Al 35 91 81 9F A2 BO 02 65 48 45 FF
This phone table has three numbers in it.

Pressing O on the keypad will cause, 201~6251719 to
be dialed.

b

PAT

When you start the program at 0200, the dis-
play will flash "PHONE". When you press a key on
the keypad, the program changes that key to an
1.D. number and searches for it in the phone table.
1f it is there it dials the number associated with
it. If the I.D. number is not in the table, the
display will flash “ERROR". As the program dials
a number , it displays it in a banner fashion. Af-
ter dialing, it returns to displaying "PHONE",

NOTE: The Telephone Co. takes a dim view of equip-
ment attached to their lines without their approval.

Ho2

TOGREEN
WIRE

7D Logic
Box /1w
PLACE oF
GREEN
WIRE

kﬁg)

D = INQi4

HDE ASBEMBLER REV 2.0

LINE®# ADDR OBJECT SOURCE PAGE 0001
; 0010 2000 }TELEPHONE DIALER PROGRAM BY MARK KANTROWITZ
0020 2000 x=40
i 0030 0000 MSG k=k+12
0040 000C DISPLY %=%+7
0050 0013 FLASH X=%k+5
0060 0018 TABLE %=k+1 #START OF NUMBER TABLE
0070 0019
0080 0019 PAD =$1700
0090 0019 PADD =$1701
0100 0019 TIMER =$1707
0110 0019
0120 0019 CHANGE =$1F40
0130 0019 GETKEY =$1F6&A
0140 0019
0150 0019 ABLE =$1FE7
0160 0019 SBD =$1742
0170 0019 SAD =$1740
0180 0019 SADD =$1741
0190 0019
0200 0019
0210 0019 %=$0200
0220 0200 A2 00 INITS LDX #0 PINITS MESSG PNTR
0230 0202 BD S5E 03 INITS1 LDA MESBGsX $GET A MEBSBSAGE BYTE AND
0240 0205 95 00 8TA MBG+X ?STORE IN Z-PAGE LOCATIONS
0250 0207 E8 INX
0260 0208 EO OC CFX #$0C #DONE YET?
0270 020A DO Fé BNE INITS1
0280 020C D8 START CLD
0290 020D A2 00 LDX #%0 #INITS INDEX FOR DISPLAYING
0300 O020F 86 13 STX FLASH # “PHONE" MESSAGE.
0310 0211 A9 FF SET LDA #$FF #SET TIMER TO .25 8EC
0320 0213 8D 07 17 STA TIMER
0330 0216 A6 13 FIVE LDX FLASH
0340 0218 B4 14 8TX FLASH+1
0350 021A A0 09 LDY #%9 $SELECT FIRST DIGIT
0360 021C A% 7F FOUR LDA #$7F $SET DIRECTIONAL REGISTER
0370 021E 8D 41 17 STA SADD
0380 0221 84 17 STY FLASH+4
0390 0223 . Aé 14 LDBX FLASH+1
0400 0225 8C 42 17 STY SBD
0410 0228 B5 00 LDA MSGs»X $LOAD SEGMENT CONTROL BYTE
0420 022A 8D 40 17 STA SAD
0430 022D Eé 14 INC FLASH+1 # INCREMENT FOR NEXT DIGIT
0440 022F W9 10 LDA #$10
0450 0231 B85 15 STA FLASH+2
0460 0233 85 16 TWO STA FLASBH+3 $DELAY FOR A FEW
0470 0235 Cé 16 ONE DEC FLASH+3 $MILLISECONDS
0480 0237 DO FC BNE ONE
0490 0239 Cé 15 DEC FLABH+2
0500 023B DO Fé BNE TWO
0510 023D 20 40 1F JSR CHANGE
0520 0240 20 6A 1F JSR GETKEY $GET A KEY
0530 0243 C9 10 CMP #$10 $VALID KEYT (0-F)
0540 0245 30 26 BMI THREE #IF YESs FIND TELEPHONE NUMBER
0550 0247
0560 0247 18 cLC
0570 0248 Eé 17 - INC FLASH+4 §# INCREMENT TO SELECT
0580 024A E6 17 INC FLASH+4 PNEXT DIGIT
0590 024C A4 17 LDY FLASH+4
0600 024E CO 15 CPY #$15 #PAST 4TH DIGIT?
0610 0250 DO CA BNE FOUR #IF NOTy LIGHT NEXT DIGIT
0620 0252 2C 07 17 BIT TIMER #.25 SECONDS UP?
0630 0255 10 FBF BPL FIVE $IF NOT» LIGHT DISPLAY AGAIN
0640 0257
0650 0257 A9 FF LDA #$FF JSET TIMER FOR ANODTHER .25 SEC
0660 0259 8D 07 17 STA TIMER #FOR DISPLAY BLANKING
0670 025C 20 40 1F SIX JSR CHANGE
06B0 025F 20 6A 1IF JSR GETKEY PGET A KEY
0690 0262 C9 10 CHP #$10 JVALID KEY? (O-F)7?
0700 0264 30 07 BMI THREE #IF YESs FIND TELEPHONE NUMBER
0710 0266 2C 07 17 BIT TIMER #+25 SECONDS PASST
0720 0269 10 F1 BFL SIX #IF NOTy» BET A KEY
0730 026B 30 A4 BMI SET #IF SO» FLASH DISPLAY AGAIN
0740 026D
0750 026D #FIND TELELPHONE NUMBER
0760 026D 18 THREE CLC #’A’ CONTAINS I.D.
0770 026E 69 A0 ADC #$A0 fMAKE INPUT LOOK LIKE TABLE I.D.
0780 0270 A2 00 LDX #%00
7 0790 0272 DS 18 TEN CMP TABLEsX iI.D. MATCH?
@ 0800 0274 EA NOP #FOR TABLE RELOCATION
0810 0275 FO 12 BER EIGHT #IF SOr» DIAL NUMBER
0820 0277 EB8 NINE INX iIF NOT, PASE OVER NUMBER
0830 0278 B4 18 LDY TABLEsX
0B40 027A EA NOP #FOR TABLE RELOCATION
0830 027B CO A0 CPY #$A0

08640 027D 90 F8 BCC NINE

0870 027F CO FF CPY #$FF $END OF TABLE?

0880 0281 DO EF . BNE TEN $IF NOT» COMPARE WITH I.D.
0890 0283 A% 06 LDA #%6 $IF 80y FLASH "ERROR" MESSAGE
0900 0285 85 13 8TA FLASBH

0910 0287 DO 88 BNE SET

0920 0289

0930 0289 $DIAL NUMBER

0940 0289 A0 05 EIGHT LDY #%5

0950 028B A% 00 LDA #$0 #ZERO OUT DISFLAY AREA
09460 028D 99 OC 00 ELEVEN STA DISPLY(Y

0970 0290 88 DEY .

0980 0291 10 FA BPL ELEVEN

0990 0293 EB8 NEXT INX

1000 0294 BS 18 LDA TABLE,X $LOAD TWO NUMBERS

1010 0296 EA NOP §FOR TABLE RELOCATION
1020 0297 C%? A0 CMP #$A0 $NUMBER COMPLETED?

1030 0299 BO 26 BCS TWELVE $IF S50y GD TD START
1040 029B 4A LSR A $ISOLATE LEFT DIGIT
71050 029C 44 LSR A $BY SHIFTING IT RIGHT
1060 029D 4A LSR A

1070 029E 4A LSR A

1080 029F 29 OF AND #$OF #MASBK LEFT NIBBLE

1090 02A1 83 12 STA DISPLY+4 $STORE FOR DISPLAY

1100 02A3 C9 00 CMP #$0 $IF ZERO» MAKE IT %0A
1110 02A5 DO 02 BNE SKIP

1120 02A7 A% 0A LDA #$0A

1130 02A9 835 14 SKIP STA FLASH+1 $STORE FOR DIALING

1140 02AB 20 1B 03 JSR MOVE #SHIFT DISPLAY LEFT
1150 O2AE 20 D9 02 LAP JSR PULSE $LIGHT DISPLAY AND PULSE PHONE
1160 02B1 DO FB BNE LAP #FINISH PULSING DIGIT?
1170 02B3

1180 02B3 #IF NOTy CONTINUE FULSING:ssso

1190 02B3 20 05 03 JSK DELAY $DELAY FOR .3 SEC

1200 02B& BS 18 LDA TAELE»X §LOAD RIGHT DIGIT

1210 02B8 EA NOP $FOR TABLE RELOCATION
1220 02B9 29 OF AND #$0OF $MASK LEFT NIBBLE

1230 02BEF 89 12 STA DISPLY+é $STORE FOR DISPLAY

1240 02BD C9% OF CMP #$0F $END OF NUMBER?

1250 02BF DO 03 BNE ZERO #IF NOT» CONTINUE

1260 02C1 4C OC 02 TWELVE JMP START #IF SOy GO TO BEGINNING
1270 o02c4

1280 02C4 C9 00 ZERO CMP #%0 $NUMBER ZERD?

1290 02Cé DO 02 BNE PASS #IF SO» MAKE IT $0A
1300 02C8 A% 0A LDA #$0A

1310 02CA 85 14 PASS STA FLASH+1 $STORE FOR DIALING

1320 02CC 20 1B 03 JSR MOVE #SHIFT DISPLAY OVER ONE
1330 O02CF 20 D9 02 LITE JSR PULSE $LIGHT DISFLAY AND PULSE PHONE
1340 02D2 DO FB BNE LITE $IF NOT DONE PULSINGy CONTINUE
1350 02D4 20 05 03 JSR DELAY #DELAY FOR .5 SEC

1360 02D7 30 BA BMI NEXT $GET NEXT DIGIT

1370 0209

1380 02D% #SUBROUTINE TO PULSE PHONE...

1390 02D9

1400 02D%9 A9 80 PULSE LDA #%80

1410 02DB 8D 01 17 STA PADD $SET PA7 TO OUTPUT

1420 02DE A9 00 LDA #$00 $TURN ON A7

1430 02E0 8D 00 17 STA PAD

1440 O02E3 A% 31 LDA #$31 $SET TIMER FOR .1 SEC
1450 OZZES 8D 07 17 STA TIMER

1460 O2ES8

1470 O02E8 20 30 03 PLAY JSR ETIL $LIGHT DISPLAY

1480 O2EBR 2C 07 17 BIT TIMER i TIMER UP?

1490 O2EE 10 F8 BPL PLAY #IF NOT» GO LIGHT DISPLAY
1500 O02F0 A% 80 LDA #$80 : FTURN PA7 OFF

1510 02F2 8D 00 17 STA. PAL -

1520 O02FS A% 31 LDA #$31 $SET TIMER FOR .1 SEC
1530 O02F7 8D 07 17 STA TIMER

15340 O02FA 20 30 03 up JSR ETIL $LIGHT DISPLAY

1550 O2FD 2C 07 17 BIT TIMER $ TIMER UP?

1360 0300

1570 0300 10 Fe BPL UF #IF NOTy GO LIGHT DISPLAY
1580 0302 Cé 14 DEC FLASH+1 iDECREMENT DIGIT

1590 0304 &0 RTS

1600 0305

1610 0305 $SUBROUTINE TO DELAY .5 SECONDS

1620 0305 A0 01 DELAY LDY #¢1

1630 0307 84 13 STY FLASH

1640 0309 A9 FF TIME LDA #$FF

1650 030B 8D 07 17 STA TIMER $SET TIMER FOR .25 SEC
1660 O030E 20 30 03 YALP JSR ETIL FLIGHT-DISPLAY

1670 0311 2C 07 17 BIT TIMER §TIME UP?T

1680 0314 10 F8 BFL YALFP $IF NOTy LIGHT DISPLAY
1690 0316 Cé 13 DEC FLASH #SET TIMER FOR .25 SEC DELAY
1700 0318 10 EF BFL TIME

1710 031A 60 RTS

1720 031B

1730 031B #SUBROUTINE TO MOVE DNISFLAY
1740 031B A0 00 MOVE LDY #$0
1750 031 B9 OD 00 CONT LA DISPLY+1,Y #LODAD DIGIT
1760 0320 99 0C 00 STA DISPLYrY #STORE IN PLACE TO LEFT
1770 0323 C8 INY
1780 0324 CO 05 CPY #35 $FINISHED?
. 1790 0326 DO FS BNE CONT #1F NOT» CONTINUE
1800 032B A4 12 LDY DISPLY+6 #LOAD INCOMING DIGIT
1810 032A B9 E7 1IF LDA ABLE,Y $GET RIT REPRESENTATION
1820 0320 85 11 STA DISFLY+S #STORE IN 6TH DSPLY POSITION
1830 032F &40 RTS
1840 0330
18%0 0330 #SUBROUTINE TO LIGHT DISFLAY
1860 0330 A0 09 ETIL LDY #$9
1870 0332 84 16 STY FLASH+3 #SET DIRECTIONAL REGS
1880 0334 A9 7F LDA #$7F
1890 0336 8D 41 17 STA SADD
1900 0339 A0 00 LDY #%0
1910 033B A5 16 INUE LDA FLABH+3 #SELECT DIGIT
1920 0330 8D 42 17 STA SBD
1930 0340 B9 0C 00 LDA DISPLYrY iLDAD CONTROL BYTE
1940 0343 80 40 17 STA SAD
1950 0346 A% 10 LDA #$10 fDELAY FOR .5 MILLISECONDS
19640 0348 85 15 STA FLASH+2
1970 034A 85 17 ATS STA FLASH+4
1980 034C Cé 17 CED DEC FLASH+4
1990 034E DO FC BNE CED
2000 0350 Cé 15 DEC FLASH+2
2010 0352 DO Fé BNE ATS
2020 0354 E6 16 INC FLASH+3 #GET NEXT DIGIT SELECT
2030 0356 E6 16 INC FLASH+3
2040 0358 C8 INY
2050 0359 CO 07 CPY #%7 F DONE?
2060 035B IO DE BNE INUE $IF NOTr» CONTINUE
2070 035D 60 RTS
2080 O035E
2090 O035E F3 MESSG BYTE $F3,$F6,EFyN4,$F?,$00 7 *PHONE® MESSAGE

2090 O035F Fé6

2090 0360 BF

2090 0361 D4

2090 0342 F9

2090 0363 00

2100 0364 79 BYTE $79r$50,$50,$5C,$50,%00 7 "ERROR® MESSAGE
2100 0365 50

2100 0386 50

2100 0367 ©5C

2100 0348 50

2100 0369 00

2110 036A +END

ERRORS = 0000

LANGUAGE LAB
basic

SOME IMPORTANT BASIC MODS from Christopher
Flynn, 2601 Claxton Dr. Herngga78A

Enclosed are listings of two machine language
programs which should be of interest to users of
Johnson Computer's Microsoft BASIC. The first sub-
routine MLDSPT is a dispatch which BASIC can use to
activate user-written machine language subroutines.
The second subroutine ARRSAV/ARRLOD provides an easy
way to save and load data on cassette tape from
BASIC arrays (either floating point or integer).

Before describing the subroutines, I would
like to mentionm the features of my eclectic system-
perhaps I can share experiences with someone.

First of all, I am using a KIMSI motherboard that
is populated with 16K of RAM and an Ithaca Audio
EPROM board. For a comnsole device, I use an SSM
VDB-1B board. My software TTY emulator is home-
brew, approximately 500 bytes long, and completely
romable and position independent. Hypertape is
great, but for tape I/0, a Tarbell board has really
proved its worth, Finally, in the hardware area,
hard copy is produced by a faithful SWTPC PR~40
printer. So much for my system...

The USR function in BASIC is used to invoke
machine language subroutines, One of the draw-
backs of Microsoft's USR is that there is no way
to directly specify the address of the user sub-
routine. Instead, the address of the subroutine
must be POKEd into BASIC.

Not having access to the source code for BA-
SIC, I could not attack the problem head-on.
MLDSPT is an alternate way of calling machine lan-
guage subroutines and works as follows.

MLDSPT itself is invoked by the USR function.
(This i1mplies that USRLOC must be patched with the
address of MLDSPT.) MLDSPT queries locations S$FE
or 254 into which the programmer has POKEd a sub-
routine number. MLDSPT then activates the proper
subroutine and the subroutine can access the argu-
ment of the USR function if desired.

Subroutine numbers can be in the range of 0 -
127, MLDSPT multiplies the subroutine number by
two and uses the result to index a table of sub-
routine addresses. The proper address is fetched

9

"MORE™ "Your KIM-1

‘Linear KIM’s Edge \ **'0" Insertion

LED Connectors Force For
Array Available From Run & Program
MORE™ EPROM's
*Program, copy, verify run any of the industry
standard EPROM’s (2708, 2758, either 2716).

Copies to or from any mix of EPROM types!

*Sockets for 3K of 2114 type RAM with decoding
to give KIM 4K continuous RAM. Decoding
may also be set to 1K boundries within an 8K
block to anywhere in memory.

*Zero insertion force sockets for both run and
program EPROM sockets. '

*No extra power supplies needed--runs from
KIM’s +5 and + 12 supply. Regulated -5V and
programming voltages generated on board.

*Documentation and software listings furnished.

*Optional 2708 EPROM containing program and
verify routines available. Optional KIM format
tape available.

*MORE™ does not monopolize the KIM edge
connectors--they pass through so you simply
unplug your existing connector, plug on the
MORE board, and reconnect your connectors.

*Special LED lets you see what the KIM audio

tape interface is doing. SEE your programs
load!

..

T.T. I.

e
TENNESSEE TECHNICAL INTRODUCES
THE NEW
MORE ™ BOARD
for KIM series Micro-computers

LOADED WITH FEATURES
More EPROM---up to 2K
More RAM---up to 3K
More Output---16 latched bits
More Use---run, copy, program to
or from any eprom type mix.

*Two 8-bit latchable output ports with 16 LED’s
in a linear array. Two DIP headers for easy port
access. NOTE: the LED’s are great for status
indicators, educational or game use. Make
lights dance! Make a bar graph indicator. Make
a disco-KIM!

*MORE™ includes a prototyping area for your
individual projects, i.e. add additional RUN
EPROM sockets, etc.

*All IC’s in sockets. No alterations to KIM!

*G-10 epoxy board with plated through holes.
4 x 1034,

*Four sets of programming and/or run person-
ality keys that allow you to change EPROM
types in seconds with no board alteration. Keys
for 2708, 2716 (3 voltage) 2758, 2716 (5 V only)
all included!

*MORE™ will not become obsolete for many
years and is a powerful and useful tool: Ideal for
education, development, dedicated applications.
And just plain fun!

MORE™ board complete with four personality key sets (8 keys), documentation, software listings,
assembled and tested. Less EPROM’s and RAM’s. $169.95 prepaid in U.S.

Check or M.O. to:
T.T.L
P.O. Box 2328
Cookeville, TN. 38501

Please allow 4 to 6 weeks for delivery.
Software on tape--$10.00 extra.
Software in 2708 EPROM--$30.00 extra.

from the table and pushed on the stack., Next,
MLDSPT issues an RTS instructiom which pulls the
address from the stack into the program counter.
Thus, the subroutine is invoked. Please heed the
notes on the listings., The addresses in the add-
ress table are the actual machine language subrou-
tine addresses minus one.

Examples in the next section will illustrate
the use of MLDSPT.

ARRSAV/ARRLOD

One of the curious omissions from Microaoft
BASIC is a feature to save and load data using
cassette tape, Simple machine language routines
have been written to overcome this deficiency.
Currently, data stored in either floating point or
integer arrays can be stored on or read from tape.
To save character string arrays, the information
must first be moved to & numeric array. To read
character string arrays, the information must be
read into a numeric array and then moved to a
character string array.

SAVING DATA

Perform the following steps to save data on
tape.
l. In my system, using MLDSPT, the save rou-
tine is machine language routine number 3,
This may vary in other systems. POKE 3
into location 254 (decimal).

2. Inform ARRSAV of the name of the array to
be saved. This is accomplished by POKing
the numeric value of the first character
of the array name into location 6027 (dec-
imal). Similarly, POKE the numeric value
of the second character of the array name
into location 6028 (decimal), If the ar-
ray name is only one character long, set
location 6028 to 0. If the array is an
integer array, set the high order bits of
6027 and 6028 to 1. Do this even if the
integer array name is only one character
long. A DIM statement for the array must
appear before data can be written form the
array.

3. Prepare the tape recorder and invoke the
USR function. USR will activate MLDSPT
which will, in turn, execute ARRSAV. Con-
trol will return to BASIC.

LOADING DATA

Reading data back in is very similar, but there
are a few cautions to be observed.

1. POKE the number of ARRLQD into location
254, In my system ARRLOD is routine num-
ber 4.

2. As described above, POKE the array name
into decimal locations 6027 and 6028.
Data will only load into an array having
the same name as the array from which the
data was written to tape. Furthermore,
the data must be loaded into an array
having at least as many bytes as the or-
iginal array. Finally, a DIM statement
mugt appear for an array before data can
be loaded into the array.

3. Prepare the tape recorder and invoke the
USR function,

EXAMPLES

The following BASIC program segments show how
MLDSPT and ARRSAV/ARRLOD are used.

Saving Data

10 DIM A(100)

20 POKE 25,3 ¢ REM SET UP MLDSPT

30 POKE 6027,ASC("™A"): REM ARRAY NAME
LO POKE 6028,0

50 Z=USR(0): REM SAVE DATA

Loading Data

10 DIM A(100): REM DEFINE ARRAY BEFORE LOAD
20 POKE 25L,hs REM SET UP MLDSPT

30 POKE 6027,ASC{™A"): REM ARRAY NAME

4O POKE 6028,0

50 2=USR(0): REM LOAD DATA

HOW IT WORKS

The commented listings expalin fairly well the
operation of ARRSAV/ARRLOD. The idea is to search
BASIC's array symbol table for the desired array
name., Once located, data is either written from
the proper symbol table emtry or loaded into the
entry.

Each entry in the array symbol table is or-
ganized as follows:

Byte 0 - first character of array name

Byte 1 - second character of array name

Byte 2 - low order byte of the length of the
entry

Byte 3 - high order byte of the length of the
entry

Information on the number of dimensions in the ar-
ray and the actual contents of the array follow
the first four bytes.

Users should be aware that ARRSAV/ARRLOD rep-
resents a minimal approach to tape data handling.
Completely absent from these routines is any kind
of error-checking facility, For example, no in-
dication is given if the name POKEd into locations
6027 and 6028 cannot be found in the array symbol
table. No reporting of read errors is performed.
Lastly, no checking is done to prevent the de-
struction of the array symbol table.

Error checking and a file-paming mechanism
are areas where an experimenter can customize and
improve on the ideas presented here.

NOTES ON THE LISTINGS

The listings for MLDSPT and ARRSAV/ARRLOD were i

made usng a home-brew editor/text formatter and
mnemonic assembler. All addresses are assumed to
be in hex in order to save typing of the leading $.

The routines are stored in 2708 EPROMs in my
system - hence the awkward addresses. The rou-
tines may be relocsted as long as the table of
addregses in MLDSPT is properly updated.

Lastly, note that my tape save and load sub-
routines are also located in EPROM at $E800 and
$E886. The JSRs to these routines can be replaced
with JMPs to KIM routines at $1800 and $1873 in
that order. However, the KIM tape routines return
to the KIM monitor. BASIC will have to be re-
started in the command mode from the terminal or
keypad.

MICROSOFT BRSIC MACHINE
LANGUAGE D1SPATCHER.

i INVOKED BY Z=USR(®).

i SUBROUTINE NUMBER 1S POKED INTO
i LOCATION $FE (234).

i SUBROUTINE NUMBER MUST BE IN THE
i RANGE ©-127.

FETCH SUBROUTINE NURBER.
MULTIPLY BY 2 TO OBTAIN OFFSET
INTO ADDRESS TRBLE

INVOKE MACHINE LANGUAGE ROUTINE.

EG2D RSFE MLDSPT LDR FE
EG2F BA AL A
E@36 AR TRX
EBG31 BOIAED
EB34 48
EBG35 BD3IBEG
£E038 48
E639 60

EB3A, X
EB3B, X

ZE838

|
I
|

. LOCATIONS $E044 through $E067 are reserved for

.THI.ECFMIPELM
;RGHI!EMSSES.

; NOTE: ENTRY IN THE ADDRESS TRBLE
ISﬂEmHL ROUTINE

I
i ADDRESS MINJS
 OReCEN e YGRED ML L0
t Iy
Eez 3 . BYTE $83
638 FF " BYTE $FF
; BITON - TURN ON GRAPHICS CELL
£03C E6 . BYTE $£6
030 B2 BYIE 82
; BITOFF-TURN OFF GRAPHICS CELL.
EG3E E6 . BYTE $E5
EQ3F 7 "BYTE $C7
; PRRSAV-SAVE RRRAY DATR
E048 ED . BYTE $€8
EB41 67 " BYTE $67
; ARRLOD-LORD ARRRY DATA
EP42 EB . BYTE $€8
E43 6 "BYTE $6E

future subroutine calls.

12

~

MICROSOFT BASIC ARRAY
SAVE. AND LOAD.

ROUTINE TO SRYE AND LOAD DATA
FROM BRSIC ARRAYS.

SAVE IS ROUTINE MO 3.

LOAD IS ROUTINE NO. 4.

POKE THE NAME OF THE ARRAY INTO
LOCRTIONS $176A AND $1768.

IF TIE GRRRY NAME IS ONE
CHRRFCTER, PUT $00 IN $1788.
IF THE ARRAY IS AN INTEGER
ARRAY, SET THE HIGH ORDER BITS
OF $176R AND $1768 TO 4

(USES $FC AND $FD RS POINTERS.)

ENTRY -POINT FOR ARRAY SAVE.
DATA IS SAVED WITH ID = 4

E8689901 ARRSAY LDA 8481

B T I S A N

EGGA BDFI17 SR 17F9
E@6d DOES BE %5
i ENTRV POINT FOR RRRRY LORD.
; LORD WITH ID = $FF.
EQGF ASFF LDA WFF
E@74 8DF917 STA 17F9

; PICK UP START OF SYMBOL TRBLE
; FROM $7C.$7D AND STORE IN
; POINTER REGISTER $FC. $7D

EQ74 AS?C TRPE DA 7L

EB76 BOFC STR FC
EB78 RS7D g o

i TEST IF POINTER HAS REACHED END
i OF SYMBOL TRBLE $7E, $7F.

i

EO7C AS7E TAPL LA &
EQ7E CSFC cP FC
E@39 Dae? BE w7
EB82 RO7F LA 7F
EB84 CSFD &P
E0685 Des BE w1
E0688 68 RTS

i RETURN TO CALLER IF END OF TRBLE
IS REACHED.

; MOVE SYWBOL TRELE ENTRY LENGTH
i TO KIN CRSSETTE ENDING ADDRESS.

i LENGTH FIELDS ARE DFFSET
| STRT O BiTRY B S BES
+ RDDRESSES.

EGB9 ABB3 TAF2 LDY 4403

EBS8 BiFC LDR (FC). ¢
EB8D 99F517 STR 47F5.¢
EQ9 88 DEY

EB34 601 CFY 801
E&93 DoF6 BNE *14p

i TEST FOR MATCH BETMEEN DESIRED
,FRRﬂYPHE(Si?BﬂGu?BB)M
i S\WT&EENTRYME
i FRRAY NAE IS 2 CHARRCTERS LONG
:FN)ISU-'FSETB&!.FRNSTFRT
i OF SINBOL TRBLE ENTRY. USE THE
i X REGISTER TO COUNT THE NUMBER
.OFMTCHEDWTERS

; CARRY SET IF NAMES MATCH
i CRRRY CLEARED IF MISMATCH

EBSS 32% TP DX 08
EQ97 BLFC DR (FC), ¥
EB99 DIBR1? P 178R. Y
EBSC bos? BNE %7
EG% E8 INX

E69F 88 DEY

EORD 16F5 BPL =14
EBR2 38 SEC

EOBA3 BAOL BCS #
EeS 18 cLe

; ALWAYS SET POINTER TO PEXT

i SYMBOL TRELE ENTRY AND SET UP

KIM CASSETTE TAPE F!)DRESSES

$47F5, $17F6 IS KIM S. R

$17F7, $17FB 1S KIM E R,
POINTER

M M e % e e

$F C. SFD

NOTE LENGTH HAS BEEN LORDED

INTO E R
EBRE RSFC TS LA FC
EORS 8DF517 SR 17F5
EORB 6DF717 C 17F7
EORE 8DF717 STR 17F7
EOB1 £5FC SIR FC
EBB3 ASFD s
EQBS 8DF617 STR 17F6
EOB8 6DF817 AC 17F8
EvBb 8DF817 STR 17F8
EOBE 85FD STR B

i X _REGISTER WILL CONTRIN $82

i IF PROPER SYMBOL TRBLE ENTRY
i WAS LOCATED. OTHERWISE, GO

i LUCATE AND TEST NEXT ENTRY IN

; THE SYMBOL TRBLE.
E0CE £A02. CPX Me2
EGC2 DOBS BNE 72

i EXAMINE KINM TAPE ID ($17F9)
i TD DETERMINE WHETHER TD SRVE
i OR LOAD.

i $E886 IS TRPE INPUT,

i $E808 IS TAPE OUTPUT.

i RETURN TO BRSIC.

EQC4 RDF917 bR 1779
EGC7 C9FF P FF
EaCy Doo4 BNE %4
EBCB 2@86E8 JSR EBB6
EQCE 68 RTS

EQCF 2000E8 JR B8O
E@D2 68 - RTS

BASIC SPEED REPORT

by Harry D. Bolch
Lone Star Elec.
PO Box 488
Manchaca Tx 78652

Glad to see the 'Notes become your full-time
job. When last we talked you were working at MOS
Technology. You may recall that we were discussing
the possibility of increasing the clock speed on a
KIM. I did replace the 6530's with new ones, the
6502 with a 65024, and the 1MHz Xtal with a 2.01
MHz Xtal. To my knowledge, the only eight-bit
system that is faster is the OSI system described
by Curt Priest of Cambridge, MASS; the 2.0l MHz
KIM with the Microsoft BASIC executes benchmark
programs more than 252 faster than the fastest
4MHz Z-80 system.

forth

KIMFORTH is moving right along. The source
code has been typed in and it assembles correctly
and runs!!! FORTH documentation is fairly complete
and is now being typed in to the system. Some cas-
sette support software still needs to be added and
verified to operate correctly so KIMFORTH isn't
quite ready for distribution yet.

Getting a software package of this size to
market is no easy thing and usually takes more time
than one would like.

You APPLE owners will be happy to hear that,
according to the FORTH INTEREST GROUP, Captain
Software of Berkeley California is offering a disc~-
based APPLE-FORTH system that conforms to the
"international FORTH standards."

It was further stated in correspondence with
the FORTH INTEREST GROUP that the programs being
offered by Programma Consultants and Seawell Mar-
keting are not true FORTH implementations because,
at least in the Programma software, the "inner-
interpreter" concept, essential to FORTH, is not
implemented.

foca

FQCAL MODS

from Bernhard Mulder
Mozart Str 1
6744 Kandel
West Germany

....8peed it up
a little...

We change the procedure EATCR (and EATCRL1)
which is called by the findline, which in turn is
called from the GOTO, IF, ON, DO command routines.

We assume that the carriage return char is in
memory and avoid the call of the routine GETC,
where switches are tested which will never be set,
when we caome from EATCR (start the following rou-
tine at $26D0 in the Aresco version 3D and $26DD in
the "6502 Program Exchange" FCL-65E (V3D).

Ccé 2A ECR1 DEC TXTP ;EATCP1

A4 2A EACR LDY TXTP ;EATCR

A9 0D LDA #0D ;load CR which we are
looking for

DO 01 BNE TST1

c8 LABL INY ;next character in line

D1 28 TST1 CMP (TXTA),Y;C.R. found already?
DO F8 BNE LABL ;branch if noy

Bl 28 LDA (TXTA),Y;store away for others
85 2B STA CHAR

c8 INY

98 TYA ;calculate address

part CR.

18 CLC

65 28 ADC TXTA
85 28 STA TXTA
85 33 STA TXA2
A5 29 LDA TXT1
69 00 ADC #00
85 29 STA TXT1
85 34 STA TA21
A9 00 LDA #00
85 2A STA TXTP
85 35 STA TXP2
60 ENCR RTS

Make the following changes to Aresco V3D

208D 20 DO 26 (was 20 D7 26)
21FF 20 DO 26 (was 20 D7 26)
22E1 20 DO 26 (was 20 D7 26)
2752 20 D2 26 (was 20 DO 26)

or make the following changes to the Program Ex-
change FCL-65E

208D 20 DD 26 (was 20 E& 26)
21FF 20 DD 26 (was 20 E& 26)
22E3 20 DD 26 (was 20 E&4 26)
275F 20 DF 26 (was 20 DD 26)

Those of you with ROR instructions in your
CPU can eliminate the ROR simulator in FOCAL with
the following code.

Start at $3291 for the Aresco version 3D
Start at $3293 for the Program Exchange FCL-65E

7E 89 00 ROR1 ROR EP4,X ;need not simulate ROR
E8 INX

DO FA BNE RORI
60 RTS

Plenty more mods in store for FQCAL. Until
next issue.

tiny basic

TINY BASIC CASSETTE SAVE & LOAD

by William C. Clements, Jr.
Univ. of Alabama
Chem & Metal Eng.
Box 2662
University, Al 35486

I recently bought TINY BASIC and the accowm-
panying experimenter's kit, and have enjoyed find-
ing out how the BASIC statements are broken down
and implemented. With a little study one can eas-
ily pick up the pseudolanguage used to program the
inner interpreter, and then all sorts of possibil-
ities exist for custom modifications to suit one's
whim., 1 noticed the comments about transferring
BASIC statements to and from cassette tape in ls-
sue 13 (Lew Edwards, p. l4), and thought perhaps
your readers might be interested in how I added
the SAVE and LOAD commands to my version of TINY
BASIC for the KIM-1l. With my implementation, TINY
can use the existing KIM monitor routines (or any
others if one wishes) to save and load programs,
and transfer of starting and ending addresses, etc.
is handled by a machine language toutine. The
cassette file number is specified in the added
BASIC commands: SAVE X or LOAD X, where X is any

integer 0 _ X _ 255 corresponding to KIM file
I.D.'s 00 through FF, My version of TINY is the
one having the cold start at 2000 hex; correspond-

ing address offsets can be added for other versions,;

The patch to the Intermediate Interpreter is
made at relative location 00B7, as shown on p.38
of the Experimenter's Manual. This is address 2827
absolute. The patch is as follows:

ijteat for keyword SAVE
00B7 8B534156C5 TAPE BC LOAD "SAVE"
;push estart addreass of

QQBC 09 29 LB 29

;8ave routine onto stack
OO0BE 09 OE LB OE

jdo it again
00C0 OB Q DS

;error stop if file id not number
00Cl CO BN

. ;80 to save routine at 290Ey

00C2 2E us

;test for keyword LOAD
00C3 BA4C4F41C4 LOAD BC DFLT "LOAD"
;Push start address of

00Cc8 09 29 LB 29
;load routine onto stack
00CA 09 28 LB 28
- ;Bo to load routine at
oocc 38 CO jQ
72928y via above instructions
QOCE AQ

DFLT BV *
. ! ' (continue with
' ' ' remaining IL code)

The constants after the LB commands specify
the hex addresses of the machine language routines
which handle the SAVE X and LOAD X functions. The
line labeled DFLT is thus moved from relative lo-
cation 00B7 to OOCE, resulting in an offset of 17y
or 23p for remaining lines, This must be accommo-
dated in the jump and jump subroutine commands in
the I.L. The changes in destination for those in-
gtructions which jump beyond the patch are listed,
All error messages originating beyond the patch
will also be increased by 23p.

My version jumps to a pair of machine lan-
guage routineg which initialize the file 1.d.,
SAL, SAH, and the TINY BASIC registers. BASIC
files are saved using a Hypertape routine stored
in EPROM at location C400y; if the user wishes to
use the KIM tape dump routine, he should change
the contents of location 2927y to 18y. Appropriate
routines can of course be relocated anywhere the
user wishes, so long as the correct entry points
are provided for in the I.,L. patch, After execu-
tion of a SAVE or LOAD, TINY must be manually re-
entered at the warm start (the limits of memory
for the BASIC statements are set for my system
when BASIC is firgt entered). A jump to warm
start could of course be placed at the end of the
tape dump and load routines if ones stored in RAM
instead of ROM were being used.

These alterations were worth their trouble in
added convenience: SAVE 01 is a lot easier than
exiting TINY, storing Ol in 17F9, and looking up
the memory bounds for the BASIC statements to set
SAL and SAH manually. I hope this modification
will be of interest to other users of TINY BASIC.

MACHINE LANGUAGE ROUTINES USED BY THE PATCH

2906 8D F9 17 00 STA 17F9y STEPS COMMON TO
A9 00 LDA $00 BOTH
85 F1 STA O0OFly ROUTINES
60 RTS
290E 20 06 29 SAVE JSR 00 FILE SAVE ROUTINE
A5 20 LDA 0020y
8D F5 17 STA 17F5y
A5 21 LDA 0021y
8D Fé6 17 STA 17F6y INITIALIZATION
A5 24 LDA 0024y
8D F7 17 STA 17F7y
A5 25 LDA 0025y
8D F8 17 STA 17F8y
4C 00 C4 JMP HYPERTAPE
2928 20 06 29 LOAD JSR QQ set 17F9y, 00FLy
4C 73 18 JMP TPLOAD read tape
292E AD ED 17 ENTER LDA EAL set address
85 24 STA 0024y at end
AD EE 17 LDA EAy of BASIC
853 25 STA 0075y program file
4C 03 20 JMP BASIC go to warm start

Restart BASIC at ENTER (loc. 292Eg) after loading.
Restart at warm start (2003 in my version) after
saving.

14

Summary of additional modifications to I.L.
Code (new trangfer statement destinmation caused by
insertion of patch)

Relative Location
(See pp. 36-40 TINY
BASIC Experimenter's

Manual) New Instruction
0014 30 D3
001F 30 p3
0029 30 D3
004B 30 D3
0052 30 D3
0054 31 4B
0056 30 D3
0073 30 D3
009E 30 D3
00BE 30 EA
00C4 30 EA
oocs 30 EA
00CE 30 EA
00D3 30 F9
00D7 30 F9
00F7 31 47
0114 30 D3
0116 31 41
0118 31 41
0125 30 p3
012cC 38 D3

TINY BASIC STRINGS

by Michael E Day
2590 DeBok Rd
West Linn, Or 97068

Here is the string mod I've been using which
1 access thru the USR verb. This requires 512
bytes of memory, and is relocatable and will run
out of ROM or protected memory except for the
storage area which operates out of RAM, however
it can be located in any 256 byte block of free
memory.

PEEK $ USR(2816,ADDRESS)
PEEK at string at the string relative address
ADDRESS., Returns decimal value of addressed byte.

POKE § USR(2822,ADDRESS,DATA)

POKE data byte DATA into the string relative
address ADDRESS, Returns string relative address
plus one.

INPUT SP$ USR(2832,BEGIN,END)

INPUT a string of characters beginning with
string relative address BEGIN, echoing back a
space with each input character, until a carriage
return is encountered, or the ending address END
is reached., Returns the string relative ending
address plus one.

INPUT $ USR(2839,BEGIN,END)

INPUT a string of characters as in INPUT SP$,
but without the space echo. Returns the string
relative ending address plus one.

PRINT SP$ USR(2905,BEGIN,END)

PRINT the character string beginning with the
string relative address BEGIN, and print a space
after each character, until a carriage return is
encountered, or the ending address END is reached.
Returns the string relative ending address plus
one.

PRINT $§ USR(2912,BEGIN,END)

PRINT the character string as in PRINT SP$,
but without the space echo. Returns the string
relative ending address plus one.

SEARCH $.USR(2946,BEGIN,DATA)

SEARCHes for the BCD equivalent of decimal
value DATA, beginning at string relative address
BEGIN, until a match is found, or the ending ad-
dress of variable "L"™ is reached. Returmns the
string relative ending address plus one.

If a match is not found the return address
will be 0 (zero). Variable "L" is decremented
once per test until wmatch is found, or it 1is 0.

=

P

MOVE § USR(2966,FROM,TO) (Length in variable INPUT SP$ USR(2832,BEGIN,END)

"L")) OB10 20 B5 OB JSR OBB5 Set pointers B

MOVEs a group of characters of the length in 0B13 84 1B sTY 1B Clear 1B
variable "L" beginning at the relative string 0B15 BG 03 BCS OBlA Goto Input routime
address FROM, and moving them to relative string
address TO, for the length of variable "L", Re-
turns the FROM ending address plus one. Variable INPUT § USR(2839,BEGIN,END)
"L" is zeroed. (Lower 8 bits only, see notes on 0B17 20 B5 OB JSR OBB5S Set pointers B
addressing of strings). OBlA A9 3F LDA #3F

OB1C 20 09 02 JSR 0209 Print a "?7"

SET POINTERS . OB1F A9 20 LDA #20

These are memory formating routines that are 0B21 20 09 02 JSR 0209 Print a "SP"
addressed by the other routines, and are listed 0B24 20 06 02 JSR 0206 Get a character
with USR statements only for reference. They do 0B27 CD 10 02 CMP 0210 Is it "ESC"?
not need to be accessed by TINY. 0B2A FO 28 BEQ OB54 If so return to TINY

OB2C CD OF 02 CMP 020F Ise it "BS"?

OPERATIONAL NOTES . 0B2F DO 11 BNE 0B42 If so back up

Addressing is limited to 0~256 (8 bit ad- OB31 A5 1A LDA 1A
dressing) and the upper bits are ignored (I.E. 512 0B33 C5 18 CMP 18 Is it begin of array?
will appear a8 a 0, and 513 will appear as a 1). 0B35 FO E8 BEQ OBILF If so restart

The string array table is perminently fixed OB37 C6 18 DEC 18 Decrement pointer
to 256 bytes in length, and dedicated for this 0B39 A5 1B LDA 1B Input SP$ 7
purpose., This table may be located anyplace in OB3B DO E7 BNE OB24 If not get next
RAM so long as intrusion frow other sources is character
not allowed. Relocation is done by changing the OB3D AD OF 02 LDA O020F Get “BS"
pag§ location address at OBAA (OBAA A0 0C LDY 0B40 90 DF BCC OB21 Priat it
#0C). The routines that access the table are
clean, (They are relocatable, and will operate 0B42 91 18 STA (18),Y Store data
out of ROM or protected memory.)

All data passed through the USR statements INPUT §$ USR(2839,BEGIN,END) Con't.
both to and from is in decimal. The data inside OB44 E&4 18 CPX 18 Is it end of array?
the routines however, remain in BCD. 0B46 FO OC BEQ OBS4 If so return to TINY

In the PRINT and INPUT routines, i1f the BEGIN OB48 E6 18 INC 18 Increment pointer
address is less than the END address, an error OB4A C9 0D CMP #0D Is it a "CR"
exit will occur which causes the exit address to 0B4C FO 08 BEQ 0B56 If so return to TINY
be 0, and the funciton asked for is not performed. OB4ZE A5 1B LDA 1B Print a "“SP"?

If only one address is given, the second ad- 0B50 DO D2 BNE O0B24 If not get next byte
dress will be assumed to be equal to the first ad- 0B52 FO CB BEQ OBI1F Print a "SP"
dress given (I.E, USR(2912 0) will print out a 0B54 E6 18 INC 18 Increment pointer
gingle character at location 0 and return an ad-~ 0B56 A5 18 LDA 18 Return exit address
dress value of 1 to TINY, to TINY

As with any USR gtatement in TINY, the ad- 0B58 60 RTS Return to TINY

dress and data information passed through the USR

statement can be calculated from any expression. PRINT SP$ USR(2905,BEGIN,END)

(Such as USR(2912,B,E-2) can be used to print 0B59 20 B5 0B JSR OBB5 Set pointers B
. . . . H Y 0B5C 84 1B STY 1B Clear 1B
a string starting at the address in variable "B", OBSE BO 03 ECS 0B63 G . .
and using the E-2 to suppress the ending carriage oto print routine
return, and another variable can be used to pick-
up the returning ending address.) PRINT § USR(2912,BEGIN,END)
The routines given have been located at the g:gg g? ?g 0B igi ??g? v igtkpoxn;ers B
end of TINY, as this allows for easy isolation 0B65 20 09 02 JSR 0209’ Pl? uph atat
from TINY by revising the user memory starting ad- rl?t character ”
dress located at 028B. 0B68 E4 18 CPX 18 Is it end of array? |
0288 A9 OB LDA #0B 0ld starting address 0B6A FO 11 BEQ 0B7D If end return to TINY;
028B A9 0D LDA #0D New atarting address oggg Eg ég é:g #gD incyemenﬁ gﬁ:nter
This is the only place that TINY references 8B70 FO OD BE OB7F I; it a "CR7Z TINY
this, so it is the only thing that needs to be 0B72 AS 1B LDg 1B P 8o reﬁ;;ﬁ7to
changed. NOTE: A cold start MUST be done after 874 DO ED BNE 0B63 I;1nt a i b
this change to set the pointers, or elae they will gB76 A9 20 LDA #20 not get next byte
have to be set by hand. . Hoptt
The entire string mod requires less than 512 gg;g ;g gz 02 ;:g 8;22 grxnt a "SP b
bytes of memory (256 bytes for the array, and 187 0 get mext byte
bytes for the routines.) O0B7D E6 18 INC 18 Increment pointer
y OB7F A5 18 LDA 18 Get exit address
A possible mod would be to place the array 0BB1 60 RTS Return to TINY
i d di it
SEARGH § USR(2506,3EGTNLDATA) (Lengen i vac-
. : "
would allow for greater than 256 bytes, but pro- 0B82 02 A8 OB JSR OBAS Set p:::i:rsLA)
gz::nzzniﬁzzzgtmTzst sz;izTT}Y followed, or 0B85 Bl 18 LDA (18),Y Pick up test byte
te . . 0B87 E 1
The cancel code used in TINY will terminate 0329 Cg ii é:g ii ;:s::miztcgglnter
an INPUT § without putting the character into the O0BS8B FO 06 BEQ 0B93 If so returé to TINY
array, therefore this code can not be used direct- 0B8D C6 98 DEC 98 Decrement variable'L'|
ly. Ali previous characters will have been in- OBSF DO F&4 BNE 0B85 If not get next byte
serted however. 0B91 84 18 STY 18 Clear 18 (pointer)
PEEK $ USR(2816,ADDRESS) 0B93 A5 18 LDA 18 Return exit address
’ . to TINY
0BOO 20 A8 0B JSR 0OBASB Set pointers A 0B95 60 RTS
0BO3 Bl 18 LDA (18),Y Pick up data Return to TINY
0BO5 60 RTS Return to TINY
MOVE $ USR(2966 ,FROM,TO) (Length in variable
- L "
4 L")
O L SHOERENY opse 2048 00 s 0w sec Tolncers s
0B09 91 18 STA (18),Y Store data dd 5118 LDA EIB;’Y Pick up byte
’ . 0BY9B 91 1A STA 1A),Y St it
OBOB E6 18 INC 18 Increment pointer 0BSD E6 18 INC 18 ? ore 1
0BOD A5 18 LDA 18 Return address to TINY OB9F E6 1A INC 1A Increment pointers
0BOF 60 RTS Return to TINY 0BAl C6 98 DEC 98 Decrement variable'lL

0BA3 DO F&
OBAS5 A5 18
0BA? 60
SET POINTERS A
OBA8 84 18
OBAA A0 OC
OBAC 84 19
OBAE 84 1B
0BBO A0 0O
OBB2 85 1A
0BB4 60

16

BNE 0B99 I1f end return to TINY SET POINTERS B USR(2997,Y,A)
LDA 18 Return exit address: OBBS 20 A8 OB JSR OBAS
to TIRY 0BB8 AA TAX

RTS Return to TIRY OBB9 AS 18 LDA 18
OBBB 85 1A STA 1A
OBBD E4 18 CPX 18

USR(2984,Y,4) . OBBF B0 03 BCS OBC4

STY 18 Save begin O0BCl 68 PLA

LDY #o0C Set array page 0BC2 68 PLA

STY 19 Store array page 0BC3 98 TYA

STY 1B Store array page OBC4 60 RTS

LDY #00 Clear Y

STA 1A Save A

RTS Exit READ KEY USR(3064)
OBF8 AD 00 CO LDA 0COO
OBFB 29 7F AND #7F
OBFD AO 00 LDY {00
OBFF 60 RTS

assembler

HDE ASSEMBLER REV 1,1

Set pointers A
Save end
Recapture begin
Save it

Bad address?

If Bo go error

Discard string link

Clear A
Exit

Pick up data

Clear bit 8 (Strobe)
Clear Y

Return to TINY

LINE® ADDR - OBJECT SOURCE PABE 0001
0010 2000 JTHIS IS A SYMBOL TABLE SORT ROUTINE FOR
0020 2000 JTHE MDS/ARESCD ASSEMBLER. IT GETS PATCHED
0030 2000 JIN TO THE ASSEMBLER AND INSTALLED IMMEDIATELY
0040 2000 SFOLLOWING IT STARTING AT $F067.

0050 2000 SWRITTEN BY J, FATOVIC

0040 2000

0070 2000

0080 2000 $FOR THIS ROUTINE TO OPERATE, CHANGE

0090 2000 $$EBSD AND $EBYE TO $47 $FO RESPECTIVELY.
0100 2000 ’

0110 2000 £=$10

0120 0010 FLAG %=841

0130 0011 CADL %=342

0140 0013 NADL =342

0150 0015 -

0160 0015 HON =$1C14

0170 0015 $=$DF

0180 O0ODF STSAVE =342

0190 O00E1 NSTAT =$EAEE

0200 OOE1 SYMLEN =$06

0210 0OE1L =869

0220 006% SYMPTR $=%42

0230 006B S=84E

0240 004E NOSYH 3=g42

0250 0050

0260 0050

0270 0050 E=8F067

0280 F067 +OFF 2000

0290 FO047

0300 F067 A9 01 SORTL LDA #1 i SET FLAG

0310 FO069 B85 10 STA FLAG

0320 FO6B

0330 FO06B AS DF LDA STSAVE # INIT. CURRENT ADR
0340 FO6D 85 11 STA CADL

0350 FO4F AS EO LDA STSAVE+1

0340 FO71 85 12 STA CADL+1

0370 FO073

0380 FO73 A% 01 LDA #1 # INITIATE FOINTER
0390 FO7S5 85 6A STA SYMPTR+1

0400 FO77 A% 00 LDA #0

0410 FO79 85 69 STA SYMPTR

0420 FO7B

0430 FO7B 20 D9 FO JSR ADRNS i INIT. ADR OF NEXT SYMBOL
0440 FO7E

0450 FOPE A0 00 LDY #0

0440 F080 B1 11 SORT2 LDA (CADL),Y

0470 FO82 D1 13 CMP (NADL)»Y

0480 FOB4

0490 F084 FO 2D PEQ SRT1 # IF EGUAL COMP NEXT CHAR
0500 FO086

0510 FO086 BO 33 BCS REX 5 NEXT SYMPOL PRECEDES -
0520 Foe8 #80 EXCHANGE REGS .

0530 Fo88

0540 FOBS A0 00 SORT3 LDY #0

0550 Fo8A

0560 FOBA AS 13 LDA NADL } MAKE ADR OF NEXT SYMBOL -
0570 F08BC 85 11 STA CADL #~CURRENT ADDRESS
0580 FOBE AS 14 LDA NADL+1

0590 FO090 85 12 STA CADL+1

0400 FO092

0610 FO092 20 D9 FO JBR ADRNS

0620 FO95

0630 FO95

0640 FO93 Eé
0650 FO097 DO
0660 FO99 Eé6
0470 FO9B FO
0680 FO9D

0690 FO9D

0700 FOYD BB
0710 FOPE AS
0720 FOAO CS
0730 FOA2 90
0740 FOA4

0750 FOA4 A5
0760 FOA6 C5
0770 FOA8 90
0780 FOAA

0790 FOAA AS
0800 FOAC 29
0810 FOAE FO
0820 FOBO

0830 FOBO 4C
0840 FOB3

0850 FOB3 Ce
0860 FOB4 CO
0870 FOBé DO
08680 FOB8

0890 FOB8 4C
0900 FOBB

0910 FOBB

0920 FOBB A0
0930 FOBD B1
0940 FOBF 48
0950 FOCO B1
0960 FOC2 91
0970 FOC4 C8
0980 FOCS CoO
0990 FOC7 DO
1000 FOC?

1010 FOCY? 88
1020 FOCA é8
1030 FOCB 91
1040 FOCD 08
1050 FOCE 10
1060 FODO

1070 FODO A9
1080 FOD2 25
1090 FOD4 85
1100 FODé6 4C
1110 FoOD?

1120 FOD?

1130 FOD? 186
1140 FODA D8
1150 FODB AS
1160 FODD 649
1170 FODF B85
1180 FOE1 AS
1190 FOE3 &9
1200 FOES B85
1210 FOE7 60
1220 FOESB

1230 FOESB

ERRORS = 0000

6A
04
.14
13

69
4E
DC

6A
aF
D6

10
01
B7

EE

08
ce

14

00
11

13

o8
Fa

13

FA

FE
10
10
[:]:]

11
08
13
12
00
14

EA

ic

Fo

compP

comMpP2

FINE

8RT1

REX
RX1

RX2

ADRNS

FINISH

INC
BNE
INC
BEG

CLv
LDA
CHP
BCC

LDA
CMP
BCC

LDA
AND
BEQ

JMP

INY
CPY
BNE

JMP

LDY
LDA
PHA
LDA
8TA
INY
CPY
BNE

DEY
PLA
STA
DEY
BPL

LDA
AND
STA
JMP

CLC
CLD
LDA
ADC
8TA
LDA
ADC
8TA
RTS

+END

SYMPTR+1 $ INCREMENT POINTER
COMP
S8YMPTR

FINE

FIND IF THIS I8 THE
SYMPTR JLABT LINE
NOSYM

8ORT2

SYMPTR+1
NOSYM+1
SORT2

FLAG # CHECK IF FLAG SET» IF S8ET EXIT
1
SORT1

NSTAT # SORT COMPLETED

POINT TO NEXT CHAR
#5YMLEN+2
S0RT2

MON $ ERROR» RETURN TD MONITOR

20 $ EXCHANGE REGISTERS
(CADL) »Y

(NADL) »Y
(CADL) »Y

#SYMLEN+2
RX1

(NADL) » Y

RX2

#$FE # RESET FLAG
FLAG

FLAG

SORT3

CADL
#8YMLEN+2
NADL
CADL+1

%0

NADL+1

AIM info

HARMING WARNING WARNING

by Leo Scanlon
Documentation Manager
Rockwell Microelectromic Devices
P.O. Box 3669, RC55
Anaheim, CA 92803

As Documentation Manager at Rockwell, I read
with interest the article on AIM 65 Manual correc-
tions published on page 20 of 6502 User Notes, No.
14. Iun this article, reader Jody Nelis recommends
using Texas Instruments #TP-27225 thermal paper
with the AIM 65. I urge you to warn all readers
NOT to use this particular paper type in their AIM
65's. We have found this particular paper to be so
highly abrasive that it can ruin the printer head
in a matter of hours! In fact, because of experi-
ences with this paper, we mailed a bright red warn-
ing to all AIM 65 owners, giving them a list of
"approved" paper types.

The approved paper types are:

1., Rockwell #TT270
Source: Rockwell Service Center
60013 Threadgill Avenue
El Paso, Texas 79924
Phone (B0O) 351-6018

2., Sears #3974 or #39B6
3. Olivetti #74707 or #74708

4, NCR #T1102
Note: This paper produces black print,
the others produce blue print.

All other corrections noted in the article
have been picked up in a set of change pages that
we mailed to AIM 65 owners that returned the Doc-
ument Registration Form.

Incidentally, I always appreciate comments,
corrections, gripes, etc. from readers of our
manuals, and invite them to write to me directly
at the address at the top of this article.

READING KIM CASSETTES from D.R.

Something not mentiofned in the AIM65 owners
manual makes reading KIM tapes impossible. The
ID number is the last two digits of the file name.
To read file #2B, enter 'xxx2B' in response to the
'F=' prompt. It took me quite awhile to figure it
out,.and I thought 1'd pass it along.

See $E3A4 in monitor listing for code.

EPROMS FOR AIM from D.R.

I have a modification for AIM 65 to allow use
of on-board ROM sockets with 2758% EPROMS. Use a
low profile 24-pin socket and bend legs 18, 19, 20
away from the body. Solder a bridge across 19,20
and then attach 1" wire wrap wire to junction scrap
away soder-mask at botton of chip with an exacto
knife and solder loose end of wire to exposed spot.
Next attach 2% - 3" piece os WWW to pin 18 and pin
10 of 227, (For use in address range of D000 -
DFFF.) See page 7-10 of AIM 65 User's Manual for
pin # of different CS llines, insert socket and
prom. Until the assembler and basic show up the
sockets may be used for user programs with single
key entry, Jade Computer Pwvoducts have 2758 EPROMS
(Intel +5V only) in stock, and have good service,

*You can do this with TMS 2516, 2716, 2732 etc.

18

NOTES ON AIM USER I/0

by Larry Goga
3816 Albright Ave.
Los Angeles, Ca 90066

According to the AIM-65 User's Guide, there
is only ome user character input subroutine which
will display a cursor, echo a character, and allow
the delete key to funmction. (see Section 7.7.1 in
the Uger's guide.) This subroutine is identified
variously as RUBOUT or RDRUB and resides at add-
ress E95F in the AIM Monitor. 1If you have exper-
ienced difficulty in getting this subroutines to
support the DELETE function do not be alarmed.
After consulting Rockwell about this problem it
seems that there is more to using this subroutine
than meets the eye.

The AIM documentation says that RDRUB uses the
accumulator and the Y Index Register. Although
this is true, what is not explained is that the Y~
Index Register must be incorporated into the user's
program.

If the Y-Index Register is zero when you call
RDRUB then the DELETE function will not work., TIf
the Y-Index Register is negative (MBS set) when
you call RDRUB then strange things will happen
wvhen the DELETE key is pressed. You may also have
found that when the DELETE function is working and
you attempt to delete beyond the first character
display position the program hangs-up and s ques-
tion mark is shown in the center of the display.
The only way out of this problem is "RESET".

The solution to these problems is to use the
Y-index Register as an input counter. The Y-Index
Register should be cleared to zero before calling
RDRUB. Then, call RDRUB, and upon returning in-
crement the Y-index Register. In this manner the
Y-Index Register will contain a count of the number
of characters which have been inputted from the
keyboard to the display. This positive count in the
Y-Index Register is the number of times the DELETE
key will work (ie. Y=0, no deletes; Y=5, 5 deletes;
etc.). The reason for using the Y-Index Register
in this manner is that the RDRUB subroutines auto-
matically decrements the Y-Index Register every
time the DELETE key is pressed, but does not re-
turn from the subroutine until some other display-
able character key is pressed.

An example of this use of RDRUB and the Y-
Index Register will be found on page 35 of the AIM
MONITOR LISTINGS. In a subroutine called ADDIN at
address EAAE we find the Y-Index Register being
cleared to zero in line 1668; and, after checking
for a carriage return or space, we find the Y~-In-
dex Register being incremented at line 1673. Af-
ter checking for not more than 10 characters in-
putted, the program loops back to input the next
character. By implementing these steps in your
program you should find that the DELETE function
will work correctly.

(Countesy of the San Feanando Valley 6507 Usens
Group)

MEMORY TEST PROGRAM

ADAPTED FROM "MEMORY TEST* BY JIM BUTTERFIELD
FROM “THE FIRST BODK OF KIM*

MODIFIED TO RUN ON ROCKWELL AIN-45
BY LARRY GOGA

. ENTEREDs 5 JANUARY 1979

REVISED: é/-u) 77

NOTE:

FOR "FROM" AND "TO" PROMPTS ENTER ONLY THE LOW
AND HIGH PAGE LINITS (HIGH ORDER ADDRESS BYTE)
THEN TYPE <CR>.

cont. on paqe 20

0000 NTEST ORG $0000 FID: NTEST (FLIP VALUE IN ALL LOCATIONS - NOW CHANGE 1 IN 3

_ 0035 A6 BA LDXZ MOD
#ss9s NEMORY LOCATIONS ss#3s 0037 A5 85 LDAZ BEGIN
0039 85 €8 STAZ POINTH ;SET POINTER BACK TO START
0000 BEGIN # +0085 003F AS 89 FILL LDAZ FLAG ;CHANGE VALUE
0000 END s 0086 003D Ca TOPDEX
0000 POINTL # $0007 003E 10 04 BPL SKIP ;SKIP 2 QUT OF 3
0000 POINTH * 40088 0040 A2 02 LDXIN $02 sRESTORE 3-COUNTER
0000 FLAG * $0089 0042 91 §7 STATY POINTL ;CHANGE | OUT OF 3
0044 C8 SKIP INY
0000 HOD % $0084
0000 FLIP + 0088 0043 D0 Fé BNE - TOP
0000 ADDRL + SAR1T 0047 E4 88 INCZ POINTH ;NEW PAGE
0000 ADDRR M 0049 A5 B84 LDAZ END ;HAVE WE FASSED END OF
004B C5 88 CAPZ POINTH ;TEST AREA?
) : 004D BO EC BLS FILL :NOFE, KEEF GOING
s#ss+ SUB-ROUTINE EQUATES sasa NENORY SET UP, NOW TEST IT
0000 FRON SE783 gg;: :g g: ;325 :E?;¥H {SET POINTER BACK TO START
0000 16 ' SE7A7
0000 ‘BLANKT s£63B 0053 A6 BA LDXZ HOD ;SET UF 3-COUNTER
0000 CRLOW + SEAl3 G255 A5 BB POP LDAZ FLIP ;TEST FOR FLIP VALUE
0000 NEAIL o SED39 0057 CA DEX i2 OUT OF 3 TINES
0058 10 04 BPL SLIF ;OR
0054 A2 02 LDXIN $02 3t OUT OF 3
sesss BEGIN PROGRAN sxsss 005C A5 89 LDAZ FLAG ;TEST FOR FLAG VALUE
0000 20 A3 E7 INPUT JSR FRON ;GET LOM FAGE LINIT P SLIF CHPIY POINTL HEKE'S THE TEST
0003 AD 1L A4 LDA ADDRL 0060 DO 15 BNE OUTPUT ;BRANCH IF FAILED
0004 85 B85 STAZ BEGIN 0062 C8 INY
0008 20 3B EB JSR BLANKT- 0063 D0 FO BNE POP
000B 20 A7 E? JSR 10 {GET HIGH PAGE LINIT 0045 E6 86 INCZ POINTH
000E AD 1C A4 LDA ADDRL 0067 A5 B4 LDAZ END
0011 B85 Bé STAZ END 0069 C5 88 CNPZ POINTH
0048 BO EB BCS POP
0013 49 00 START LDAIN $00 ;ZERO POINTERS FOR $ABOVE TEST OK - CHANGE AND REPEAT
0015 AB TaY ;LOW-ORDER ANDRESSES 004D Cé BA DECZ MOD ;CHANGE 1 OUT OF 3 POSITIONS AND
0014 85 87 STAZ POINTL . 006F 10 AD BFL FASS ;DO NEXT THIRD
0018 BS B9 BIGLP STAZ FLAG ;=00 FIRST PASS, =FF SECOND PASS 0071 A5 B9 LDAZ FLAG
0014 42 02 LDXIN $02 , 0073 49 FF EORIN $FF ;INVERT FLAG FOR PASS THO
001C 84 B4 STXI MOD }SET 3 TEST EACH PASS 0075 30 A1 BNl BIGLP
001E AS 85 PASS LDAZ BEGIN SET POINTER TO START OF
0020 B 86 STAZ POINTH ;TEST AREA 0077 BC 1C A4 DUTPUT STY ADDRL :SAVE LOW ORDER ADDRESS
0022 A4 B4 LDXZ END 0074 AS B8 LDAZ POINTH
0024 A5 89 LOAZ FLAG 007C 8D 1D a4 STA ADDRH ;SAVE HIGH ORDER ADDRESS
0026 49 FF EORIN $FF ;REVERSE FLAG 007F 20 13 EA JSR CRLOW
0028 85 B8 STAZ FLIP 3=FF FIRST PASS, =00 SECOND PASS 0082 4C 39 EB JNP MFAIL :DISFLAY MESSAGE AND ADLRESS
0024 91 87 CLEAR STAIY POINTL ;WRITE ABOVE FLIF VALUE :AND RETURN TO AN HONITOR
002C €8 INY {INTO ALL LOCATIONS
0020 DO FE BNE CLEAR : sx29+ END PROGRAN #++%e
_002F E4 8B INCZ POINTH
0031 E4 B8 CPXI POINTH
0033 BO FS BCS CLEAR

||“L|III"|I:EE;|I :!i; .I:lll‘[]' ‘[]'
’ connect a 560 ohm resigstor from IC Ul6~1

to Vcec (+5V) at the common ends of R36,

7, 3 d 11 560 ohm).
MODIFICATION TO KIMSI TQ ADD 4K OF RAM TO MEMORY 37, 38 and 35 (a ohu)

SPACE BELOW MONITOR

3, Last, insert a 4K RAM board into the KIM-~
ST with a starting address of 0000 H.

Note that all 3 steps must be taken.
by John R. Campbell

6278 Lake Lucerne Dr,

" Incidently, the KIMSI diagram has an error:
San Diego, Ca 92119

IC 1B-8 is connected to IC 11C~9 and IC9E-10 does

oo . not connect to IC 11C-9,
The KIMSI, as originally designed, allow ad- —

dition of 5-100 type interfaces to the KIM-1, but
anly in the address space from 2000 Hex and up.
By making the following changes, 4K of RAM memory
can be added to give a total of 4K from 0000 H to
13FF H, which is desireable to have.

The KIMSI is manufactured by Forthaought Pro-
ducts, Box 386, Coburg, OR 97401.

Als

1. The KIMSI is modified by cutting the trace
between IC 8A4-12 and IC 9B-3. A 7425
Dual 4 input NOR is added in the expan-
sion area and is wired as shown. ywens

This part of the modification enables the
KIMSI and disables the KIM-1 for address
space from 0000 H through OFFF H,

2. The second part of the modification moves
the onboard KIM RAM from 0000 through O3FF
to 1000 through 13FF. This is done by
cutting the trace between IC U4-1 and IC
Ul6-1. The proper place for cutting this
trace is on top of the KIM-1 board near
where the trace meets Ul6-1. On top of
the board connect IC Ul6-1 to IC u4-5 and

20

HUDSON DIGITAL ELECTRONICS, INC.

inc. BOX 120, ALLAMUCHY, N.J. 07820 @ 201-362-6574

KIM-1 PRODUCTS FROM HDE, INC.

DM-816-M8 8K STATIC RAM MEMORY

This is the finest memory board available for the KIM-1 at any price. Commercial/lndustrial quality. All
boards are continuously operated and tested for a minimum of 100 hours prior to release. Full 6 month parts
labor warranty.

DM-81 §-DI1 8” FLVEX!BLE DISK SYSTEM
Available in single and dual drive versions. Includes interface card, power-supply, Sykes controller and
drive, cables and manual. File Oriented Disk System software with HDE text editor.

DM-816-MD1 5” FLEXIBLE DISK SYSTEM

Single and dual drive versions include interface/controller, power supply, Shugart drive, cables and man-
ual. Advanced version of FODS software with HDE text editor. Latest addition to HDE peripherai product line.

DM-816-CC15 MOTHER BOARD
A professional mother board for the KIM-1. All KIM-1 functions remoted, includes poweronreset. 15 con-
nectors. Provision for Centronics printer interface. Card cage and cabinet configurations available.

DM-816-UB1 PROTOTYPE CARD
Designed for ease of special applications development. Handles up to 40 pin dips.

HDE ASSEMBLER

Anadvanced, two pass assemblerusing 6502 cross-assembler mnemonics. Free form, line oriented entry.
Directives inciude: .OPTION, .BYTE, .WORD, .FILE, .OFFSET, .END. Output options include: LIST, NOLIST,
SYMBOLS, NOSYMBOLS, GENERATE, NOGENERATE, ERRORS, NOERRORS, TAB, NOTAB. Assemble from
single or multiple source files. Place source, object and symbol table anywhere in memory. Automatic paging
with header and page number. User's manual. Approximatety 4K. Loads at 2000 or EQQOQ. Specify on order.

HDE TEXT OUTPUT PROCESSING SYSTEM (TOPS)

A comprehensive output processor, including left, right and full justification, variable page length, page
numbering (Arabic or U/C and L/C Roman), page titling, string constants, leading and trailing edge tabbing,
field sequence modification, selective repeat, selective page output and much more. Over 30 commands to for-
mat and control output of letters, documents, manuscripts. User's manual. Approximately 4K. Loads at2100 or
E100. Specify on order.

HDE DYNAMIC DEBUGGING TOOL (DDT)

Built in assembler/disassembler coupled with program controlied single step and dynamic breakpoint
entry/deletion facilitates rapid isoiation, identification and correction of programs under development. Key-
strokes minimized with single letter, unshifted commands and optional arguments. User's manual. Approxi-
mately 2K. Loads at 2000 or EQ0Q. Specify on order.

HDE COMPREHENSIVE MEMORY TEST (CMT)

Eight separate diagnostic routines test for a variety of memory problems. Each diagnostic, the sequence
of execution, the number of passes and halt/continue on error is selected by the user on call-up. Tests include
pattern entry and recall, walking bit, data-address interaction, access time and cross talk, simulated cassette
load, slow leaks. Suitable for static and dynamic ram. User's manual. Approximately 3K. Loads at 2000 or EQOO.
Specify on order.

HDE TEXT EDITOR (TED)

Complete, line oriented text editor accepts upper or lower case commands. Functions include line edit,
line move, line delete, block delete, resequence, append, list, print, locate, set, scratch, automatic/semi-auto-
matic line numbering, lastcommand recall, job command. This editor is supplied with all HDE Disk Systems.
User's Manual. Approximately 4K. Loads at 2000 or EQQO. Specify on order.

ALL PROGRAMS ARE AVAILABLE FOR LOCATIONS OTHER THAN
THOSE SPECIFIED AT ADDITIONAL CHARGE.

Disk-Note A Cassette-Note B Manual Only Note C

HDE Assembler $ 75.00 $ 80.00 $ 5.00 $25.00
HDE Text Output Processing System (TOPS) 135.00 142.50 10.00 15.00
HDE Dynamic Debugging Tool (DDT) 65.00 68.50 5.00 5.00
HDE Comprehensive Memory Test (CMT) 65.00 68.50 3.00 5.00
HDE Text Editor (TED) N/C 50.00 5.00 15.00

Note A. Media charge $8.00 additiona! per order. Save by combining orders.
Note B. Cassette versions available 2nd qtr. 1979.
Note C. Additional charge for object assembiled to other than specified locations.

ORDER DIRECT OR FROM THESE FINE DEALERS:

LONG ISLAND

JOHNSON COMPUTER PLAINSMAN MICROSYSTEMS ARESCO COMPUTER GENERAL STORE LONE STAR ELECTRONICS
Box 523 Box 1712 P.O. Box 43 103 Atlantic Avenue Box 488
Medina, Ohio 44256 Auburn, Ala. 36830 Audubon, Pa. 19407 Lynbrook, N.Y. 11563 Manchaca, Texas 78652

216-725-4560 800-633-8724 215-631-9052 516-887-1500 512-282-3570

65XX chip family stuff -

CPU BUG

by Heinz J. Schilling, DJ1XK
Im Gruen 15
D-7750 Komnstanz 16
West Germany

This evening I was informed by Dr. Karl Mein-
zer (see BYTE 1/79: "IPS") that something seems to
be wrong with the JMP Indirect instruction.

I have made some quick tests, and I must in-
form you that the JMP Indirect is indeed defective!

The MOS Programming Manual says (page 141,
9.8.1.):

"In the JMP Indirect instruction, the second
and third byte of the instruction represent the
indirect low and high bytes respectively of the
memory location containing ADL. Once ADL is
fetched, the program counter is incremented with
the next memory location containing ADH."

But this is only correct al long as the loca-
tion containing ADL is not the last byte of a page!

In this special case the incrementation works
like a wrap around in the page as the handling of
the carry seems to be processed -incorrect.

The ADL is fetched from the last byte of the
page, but ADH is fetched from the first byte of
the same page instead of the first byte of the next
page. This error occurs with CPU chips from MOS
and from Synertec, it will be the same with Rock-
well chips eventually.

So it is wise not to use the JMP Indirect
instruction in the form of 6C FF xx.

6522 INFO & DATA SHEET CORRECTIONS

THE EDRITOR
In issue #13 we presented a 6522 I1/0 board
design. If you've looKed over the 24 page 6522
spec sheet, you've probably commented on the com-
plexity of the device.

While I was at MOS Technology, I had occasion
to go through the spec sheet and confirm many of
the chips operating modes. A number of typograph-
ical & operational errors were found and noted,
(thanks to feedback from a number of sharp users).
Things may make a little more sense after our dis-
cussion of the problem areas with the 6522 VIA chip
and documentation,

page 3 - the peripheral B port is capable of
sourcing 3.0 ma (not 30 ma).

page 13 - last sentence should read "Bit 7
will be read as a logic 2.

page 16 - section 4 should read+"If ACR5=0,
T2 acts..."

page 24 - the delay time for Terl, Tsr2, and
Tgr3 should be 300 ns minimum and not 300 ns maxi-
imum.

page 10 - in mode 010, CBl generates 9 clock
pulses for controlling external devices. This is
a serious bug in the chip.

page 10 - in mode 011, the shift register
DOES stop the shifting operation after B bits have
been shifted in. Reading or writing the shift reg-
jster resets the Interrupt Flag and initializes the
SR counter as well as re-starting the shifting ac-
tion.

22

page 11 -~ in mode 101, CB2 remains at the
state of the last bit shifted until a new bit is .
shifted out. . b

figure 11 - data becomes valid approx 1.5
usec following the negative transition of CBl.

figure 12 -
sing edge of CBl

output data is valid on the ri-

page 12 - in mode 111, the SR counter sets
the SR Interrupt flag each time it counts 8 pulses
and DOES disable the shifting function.

Perhaps a little explanation on the 6522 ti-
mers is in order, They're different from the 6530
style in that they are full 16 bit counters as op-
posed to the 6530 style 8 bit counters with pre-
scaling. This gives the 6522 timer the capability
for much better resolution (to lus. with a 1 MHZ
clock) over the entire range from 1 us. to 65,536
us. (65.5 milliseconds).

There are two timers in the 6522, each slight-
ly different in its abilities. Timer 1 can handle
normal 16 bit timer functions as well as operat-
ing in the "free runmning'. mode, generating a square
wave clock on the output-of PB7 independent of any
processor intervention, Handy for test signals a-
round the workbench ad well as for clocking per-
ipheral devices such as A/D's etc. Timer 2 can op-
erate as a pulse counter where it keeps track of
negative going pulses coming in on the PB6 line as
well as the normal "one shot" interval timer mode.

The shift register is probably the most mis-
understood function in the VIA, This B8 bit synch-
ronsus serial port was designed to facilitate in-
ter-system communications, not as a "normal' asyn-
chronsus werial I/0 port. The serious bug in the
shift-register (mentioned previously) makes this
function even less useful. There are, however,
other uses for the shift register. How about
clock or music generation? I did think about us-
ing this shift register as the main element in a
mini-floppy interface but gave up the idea after
an investigation of the timing requirements of the
floppy.

more next time.

EXTENDING THE RANGE OF KIM-1 TIMER TO 1:32640

by Cass Lewart

many systems based on the 6502 microprocessor
e.g. the popular KIM-1, contain ome or more firm-
ware timers, When a value K is stored in a spec-
ific location, the timer starts a countdown last-
ing K time periods P, where P can assume 1, 8, 64,
or 1024 usec depending on the time location cho-
sen. A typical program using the firmware timer
would look as follows:

A2 XX LDX, K

8E 06 17 START STX TIMER start timer

2C 07 17 CHECK BIT TIMOUT check if timer
finished
10 FB BPL CHECK 1if not, check
again
With K assuming values between 0 - FFhex, the

range of the timer is 1:256 (K=0 results in a
countdown of FFhex + 1). This timing range may be
inadequate for some applications and can be ex-
tended to 1:32640 by simply adding two statements
at the end of\the revious program:

)
b R T

DO F5 BNE START

The number of time intervals will be now:

(k+1) ¥ 0 ¢ K ¢ PFhex

2
(Fl?hex+z)(.£§-;»§-x-+') K = o0

The following table shows the delay intro-
duced by the timer program for selected values of
K. These figures do not include the overhead
caused by the testing and looping instructions.

KIM-1
TIMER LOCATION 1704 1705 1706 1707
INTERVAL P lus 8us 64us 1024us
K (HEX)
01 lus 8us 64us 1024us
10 136us {1.09ms | 8.7ms 13.9ms
20 528us (4.22ms | 33.8ms | 541lms
40 2.08ms8{16.6ms | 133ms 2,13sec
60 4.66ms|37.2ms | 298ms 4,77s8ec
80 8.26ms|66ms 528ms 8.458ec
AOQ 12.9m8{103ms 824ms 13.28ec
co 18.5ms|148ms l1.19sec} 19.0sec
00 32.9ms {263 ms 2.8lsec| 33.Fsec

SYM ARD AIM TIMER LOCATIONS

by Marvin L. De Jong
School of the Ozarks
Point Lookout, Mo 65726

Enclosed find a short table that may be of
sBome use to SYM-1 and AIM 65 owners. Both the
SYM~1 and AIM 65 have 6532 chips which in turn
have interval timers that are almost indentical to
the timers on the KIM-1. 1In fact, in many programs
written for the KIM-1, one can merely substitute
the address given in the table if he is using an
AIM 65 or SYM-1.

If the program involving a KIM-1l timer is us-
ing the interrupt mode, that is, PB7 is connected
to the IRQ line or the NMI line, then SYM-1 users
are out of luck as far as using the 6532 is con-
cerned. Perhaps they could jumper a lead from the
IRQ pin on the 6532 to the IRQ pin.on the 6502, but
I am certainly not recommending that without a
SYM-1 with which to experiment, The AIM 65 people
are still in luck, for the 6532 interrupt is con-
nected on board to the IRQ pin of the 6502. So
AIM 65 users can make use of all the KIM-1 programs
that use interval timers by substituting the ad-
dresses shown in the table.

Of course AIM 65 and SYM-1l users can rewrite
any timer routine using the 6522 chips that both
these systems include.

TIMER KIM-1 ADR. AIM 65 ADR., SYM-1 ADR.
T0001 $1704* $SAL94* SAL1CH*
TO008 $1705 $AL95 $A41D
T0O064 $1706 $A496 SALLE
T1024 $1707 $A497 $A4LLF
READ STATUS $1707 $AL97 $A4LO7
READ TIME $1706 $A486 $A4L06

*Add eight (in hexadecimal) to the address to en-
able the interrupt feature on the KIM-1 and AIM 65,

**The interrupt line on the SYM-1 is not connected.

USE OF THE RDY LINE TO HALT THE PROGCESSOR

by Gonrad Boiavert
Applications Manager
Synertek

The RDY line, available on the expansion con-
nector, is used to halt the processor. This line
is normally high and is driven to the low state in
order to halt, and then driven high again to re-
atart,

The timing of the RDY line transition must
not be random, relative to the processor clock.
If it is, then the processor will occasionally
fail to re-start., To solve this problem, it is
necessary to time the RDY line transitions so that
they occur during 0l timing, only.

The following circuit can be used to accomp-

lish this:
Y. 4

HALT

RDY

 In this circuit, HALT is the low-going sig-
nal indicating that the processor is to be stopped.

EPROM PROGRAMMER—Model EP-2A-79

OPTIMAL TECHRNOLOGY, INC,
EP-2A-79
® 8 EPMOM PROGAAMMER .o .
o

he raBBOEALITY

ROGHAMMING T
e

on o+

o]

oFF
PROCRAMMNG
VOLTAGE

SOFTWARE AVAILABLE FOR F-8, 8080, 6800, 8085, Z-80,
6502, KIM-1, 1802, 2650.

EPROM type is selected by a personality module which plugs
into the front of the programmer. Power requirements are
115 VAC, 50/60 HZ at 15 watts. It is supplied with a 36 inch
ribbon cable for connecting to microcomputer. Requires 1%
1/O ports. Priced at $145 with one set of software, per-
sonality modules are shown below.

Part No. Programs Price
PM-0 TMS 2708 $15.00
PM-1 2704, 2708 15.00
PM-2 2732 25.00
PM-3 TMS 2716 15.00
PM-4 TMS 2532 25.00
PM-5 TMS 2516, 2716, 2758 15.00

Optimal Technology, Inc.
Blue Wood 127, Earlysville, VA 22936
Phone 804-973-5482

23

MobDuLE

:
9
: ;
¥
.
0
‘He
A

MVM 1024 WMicrorRocessor VIDEO

SABIIBSD IFHI 235337333330

The MVM-1024 is a video display that departs from the
usual DMA page memory structure. Two on-board bi-directional
ports hold the cursor position, eliminating the need to use micro-
processor registers to form a memory pointer and external RAM
to-save the cursor position. The cursor display is a blinking over-
and under-line. Reverse video characters can be generated in-
dependent of cursor function.

The MVM-1024 is ideal as a parallel access display. The
vpper / lower case capability, together with its unique organi-
zation make it a natural for text editing applications. The board
uses more expensive low-power Schottky logic and low-power
memory. Designed for no specific microprocessor, the interface
can be adapted to any available microprocessor. It can support
separate IN and OUT data buses, or o single bi-directional
data bus.

KiMm=1
GOES
VIOEQ

TR
IOHNSON P.O. BOK 523 MEDINA, OHIO 44256

COMPUTER
e

(216) 725 4560 OR 725-4568

comments...

COMMENTS FROM

by Les Jacobson
3841 Fetlock Cir.
Colorado Springs Co 80918

I have some information which I would like to
have you pass on to the other readers of USER NOTES.
It may keep them from repeating some of the mis-
takes which I have made.

First, DESPITE the full page ads in October
and November issues of BYTE, Commodore is NOT able
to supply the KI¥-3B, nor the KIM-4, nor the KIM-

5 nor the KIM-6, During telephone conversations
with their Marketing dept., in December, I was ad-
vised that these items would be available after the
first quarter of 1979, This (again) despite their
ad's statements that ALL of these were available
for immediate shipment.

Today (March 13th) I phoned them again., This
time I learned that Commodore has decided not to
construct and offer EITHER NOW OR IN THE FORSEE-
ABLE FUTURE any of the above boards. Further in-
quiry lead me to locate probably the last remain-
ing KIM-6 in the U.S., Falk-Baker Co. in Nutley,
N.J. (201) 661-2430, has a limited supply of the
KIM-4 motherboards. So does the NCE/CompuMart in
Ann Arbor, Mich, (800) 521-1534. 1In fact, NCE is
discounting their remaining KIM-4s and the very
few KIM-3Bs that they still have by almost 30%.

My intent is to attempt to locate a manufac-
turer who can duplicate the KIM-6 so that I can
prototype additional memory. With the recent pri-
ces for good 2114s having dropped, I believe that
16K of memory should be buildable for less than
$200.

It appears that the KIM is not the only thing
which Commodore is not supporting. I'm a Semior
Software Systems Engineer with the Aerospace div-
ision of Ford, My primary work is for the Dept.
of Defense but I interface with other government
agencies. The other day I visited the National
Bureau of Standards in Boulder. Since my interests
sre software I wss immediately involved with their
latest experiments and applications. 1In support
of one of their projects, NBS purchased 29 PET
computers, Their problem, 1 learned, was that NOT
ONE of these units functioned as advertised. Com-
modore had been called to correct the problem and
hadn't bothered to extend the courtesy of a re-
sponse, NBS engineers told me that the problems
were shoddy workmanship, poor printed circuit
board construction, and the use of many sub-stand-
ard chips. I was told that NBS had stopped pay-
ment on the purchase and was preparing to return
all of the units to Commodore,

Interestingly enough, the owner of our local
Computerland is returning his entire consignment
of PETs to Commodore for the identical reason,

I support your search for a RPN calculator
chip interface for the KIM., RPN is precicely the
concept utiliged by the large scale machines be-
cause of the inherent efficiency., It may mean ded-
icating up to 4 memory locations to retain precis-
ion, but that appears to be trivial,

For anyone still wanting to go "glass" TTY in-
stead of the clanking monster, SWITP makes a very
nice unit for almost exactly the same price as a
working TTY. And it has many more features than the
Teletype does. In addition it displays the more

reasonable 24 by 80 format which is far more use-
able unless you don't care that your computer only
plays games. -

I promise not to write often, But I will at-
tempt to keep you posted on my successes and fail~-
ures.

By the way, Micropolis has impressed me the
most of any company with their disk configuration
and reliability. Has anyone successfully inter-
faced their hardware to the KIM bus? If so, how
about letting the rest of us in omn it.

Keep up the good work, and thanks for warning
the others of the holes in the KIM path,

ALTERNATE SOURCE FOR OSI BOARDS

by Robert F, Solomon
5868 JoAnne Court
North Ridgeville, Ohio 44039

GREAT NEWS FOR OSI OWNERS! As most owners of
0SI computers know, delivery on OS5I boards range
from two weeks to infinity; with emphasis on the
latter., While attempting to locate a bare 0ST 420
board, I found out that D&N Micro Products, 3932
Oakhust Dr,, Fort Wayne, In 46815 made O0SI compat~
ible boards. I called them and learned they made
an 8K RAM board in kit form at a reasonable price.
I promptly sent them a money order and received the
kit within 5 days, After assembling it and trac-
ing a shorted foil (my fault, not theirs) it worked
beautifully., They also make a Real Time clock and
a proto board; with a couple more boards just go-
ing into production. 1 am well pleased with their
RAM board and love their delivery.

Before I go into my present activities, I
would like to explain my system., (Mainly to show
that I am not working with a super-sophisticated
system, but more on the level of what I consider
the system of the average tinkerer. I have an 0SI
pystem with 16K,video board and cassette interface.
It is based on the 404V board, I have an RO-15
Teletype for hard copy. The entire system has been
built from kits. My major accomplishment has been
to interface the computer to an electronic organ.
This is not synthesized music but a case where the
computer actually plays the organ.

Most of my programming has been in machine
language and Tiny Basic. I am now getting Focal
up and running. As of right now, Focal appears to
be working, but as yet I have not exercised all of
the functions to make sure everything works. I
hand loaded the entire program from the KIM based
listing of the Aresco version 3D. I have all the
patches made to make it operate on the OSI.

1 am planning to summarize these patches and
submit an article to NOTES for publication. At
present, I am starting work on a PLL FSK interface
to operate with the 0SI 430 I/0 system to up my
cassette records to 1000 baud. 1 plan on publish-
ing this also.

I think that is enough ramhling for now, I
hope my contributions and thoughts will encourage
other 0SI users to get on the NOTES bandwagon and
share their experiences.

(EDITORS NOTE - .
Bob has just sent in an article on adapting

a KIM 6530-003 to the 0SI system for the purpose

of reading KIM compatible cassettes. That article

will appear in #16, Thanks Bobl!)

25

music

ADDITIONS TO THE MTU MUSIC SOFTWARE PACKAGE

by Bruce Nazarien
WDBDRK

As promised, here are a few changes you should
try to make to Hal Chamberlain's DAC software. I
aent these to him and he told me he liked them and
would be using them in the demo ROM for the DAC
system. I guess being a musician has its advan-
tages!! So, here they are, and you may wish to
put these in the User Notes as well.

PROGRAM CHANGES FOR KIM4YV
(For use with the MTU DAC music system)

THESE CHANGES WILL CORRECT AN ERROR IN ASSEMBLY

ADDRESS SHOULD READ:
1788 3E, not 2E
178D 3E, not 2E
1792 3E, not 2E
1797 3E, not 2E
179C 3E, not 2E
1741 3E, not 2E
17A6 3C, not 2C
17AB 3C, not 2C

THESE CHANGES ARE SUBJECTIVE MUSICAL CHANGES
IN CONTENT...You may like them, and then again,
you may not. Your ears will tell you yes or no.
hi.

ADDRESS SUBSTITUTE ADDRESS. SUBSTITUTE
179F 24 for 1E 0088 06 for 14
1749 24 for 1lE 0092 10 for 1E
17B8 14 for 22 009C 16 for 24
17BE 30 for 2C 0204 14 for 22
17C2 2C for 22 0209 1A for 28
17¢c3 32 for 2C 020E 1A for 28
17D1 10 for 1E 0234 1E for 24
17D6 10 for 1lE 025¢C 1E for 24
17DB 14 for 22 0298 1E for 24
029D 22 for 24

Also the following:

02c9 18 2C 2C 44 44
02C3 18 36 36 4E 4E
0203 18 32 36 4E 52
02D8 48 30 3C &4E 5C
02DD 18 40 00 00 58
02E2 24 3A 00 00 52
02E7 0C 36 00 00 4E
02EC 30 2C 44 &4C 52

THESE CHANGES ARE FOR THE "“EXODUS" SONG TABLE
IN THE MTU ADVANCED MUSIC SOFTWARE PACKAGE, AVAIL-
ABLE FOR THE MTU DAC MUSIC SYSTEM. (K-1002)

I don't know if you have seen the article in
MICRO, Ish 2 which attempt to explain how to use
the DAC music system..It is a good piece of writ-
ing, well aimed at people who do not know that
much about the semantics of musical part-writing,
but ole Armand (Camus, the author) made a few
good old-fashioned boo-boos in there...He states
address 001D will change the TEMPO of the tune--
well, maybe in his software it is, but in the list-
ing I have, the TEMPO byte is location 0016. Also,
he states that the execution point may be changed
from the beginning ($0200) to another point as
long as you start out with a correct duration byte.
Correct, but the addresses are not 0017 & 0018 in
my listing...the starting address should be in lo-
cations 0014 (SAL) and 0015 (SAH). The little
chart he has made regarding the available memory
locations and their use in the song tables is
right on the money!! Hope you haven't been con-
fused by this. I really was for a few minutes un-
til I dug back in the lisings I had. Maybe there
is a difference in the software that was made
available with the DAC that Tripp was selling and
the ome that MTU is doing on their own?

26

interface

A SIMPLE MICROPROCESSOR INTERFACE CIRCUIT

by Cass R, Lewart

The following simple and inexpensive interface
circuit will let KIM control LEDs, relays or AC op-
erated appliances.

The computer ports are directly connected to
inputs of SN75492., This is a popular MOS/LED dri-
ver IC, described by me in earlier issues of KUNWN,
which can sink up to 200 mA on each of its six
outputs. A typical use for this IC is as digit
driver in multiplexed LED calculator displays. It
can also be used to drive individual LEDs, relays
or optocouplers, To calculate the value of load
resistors it should be remembered that the voltage
drop between any output and ground of SN75492 is
700 mV. The HEP P5002 or Motorola MOC3010/1f is an
optocoupler interfacing an infrared emitting diode
to a low power Triac. The low power Triac in the
optocoupler in turm controls a larger Triac e.g.
HEP R1723 to turn on and off AC appliances, motors,
heaters, etc.

If more than 6 ports of a computer are being
used for control, additiomal SN75492s can be in-
stalled, The same port can also drive more than
one output e.g. an AC load via an optocoupler and
an LED as activity indicator.

LoAD

<
<

>4
4
s " 2k
v o
+ @ 3
[]
Y k
(24 9|
o«
Q- AN - o
3
ale
Z Q
2 .
O o ™
B
e Y -
qwsf
» o o N
- o~ <
- 3 >
To wFod
¥ A
2 2 %I
AROM MID? PRO-PRT or FPBO~ fB7

KIM SOFTWARE ON CASSETTE

We know that you have betten things to do with

your time than punching hex code into your machine. OUR PRESENT OFFERINGS INCLUDE:
Because of u;u, we have made some of The Longex
programs availfable on KIM cassette. KIMATH l4pecify $2000 on $F800 veasion)..... $12.00

. {includes earata sheet for manual)
These cassettes are ordginal dumps, not cop-

ies, made with top quality 5-senew housing cadselies HEXPAWN [§A0m 48868 #1713} . uuereenearanninnnens $5.00
in the astandand KIM tape 4peed. Thiniy seconds of
4ync characters precede the program to enable you DISASSEMBLER (§20m i58u€ #14)ciueeuennsrnnnne $5.00
2o Zune up your reconder on PLL.
. . . BANNER (from 444u€ #14) ... uieeeinnsnnnonennns $5.00

Ane you AIM § SYM owners interesied 4in having
Aome of these programs availabfe for your machines? PAYMENT MUST BE IN U.S. FUNDS

6502 USER NOTES, POB 33093, N. Royalton Ohio OVERSEAS CUSTOMERS PLEASE INCLUDE $1.00

44133 EXTRA PER CASSETTE FOR EXTRA POSTAGE.

PET 8K CASSETTE TAPES

PET 16K NEW Full-size Keyboard Premium quality, low noise, in 5 screw housing.
PET 32K NEW Full-size Keyboard Includes labels. -- All tapes guaranteed --
PET Dual Disk (343,000 bytes online) C-10 10/5.95 50/25.00 100/48.00
PET Printers (May 1979 availability) C-30 10/7.00 50/30.00 100/57.00

2021 Electrostatic Norelco-style hard cassette boxes 10/1.25

2022 Tractor Feed Soft poly cassette boxes 10/1.00
2023 Pressure Feed

2716 (Intel) or 2516 (Ti) +5V EPROM $ 45
KIM-1 2114 L NEW low power MOS Technology $ 6.95
SYM-1 6550 RAM (for Commodore PET) $16.20
KL-512 Power Supply 6522 VIA A
for KIvh. VM. and extra RAM 2 VIA or 6520 P! $ 10.50
6500 Programming Manual (MOS) $ 6.50
Memory Plus
6500 Hardware Manual (MOS) $ 6.50

KiM-4 Motherboard e ot
Synertek ROM BASIC irst Book o .

Synertek KTM-2 Keyboard Teminal
Problem Solver KM8B KIM RAM

Programming a uComputer: 6502 Foster $ 8.95
Programming the 6502 R. Zaks $ 9.95

KIM Microchess (Jennings) $ 13.00
SEA-16 -- NEW 16K Static RAM . .
Uses new MOS Tech. very low PET Microchess {(Jennings) $17.95

4(1.35 6K).
power 2114 (1 35 amp/16K) Write for: 6502 and S-100 product list

Seawell Buffercd Motherboard $ 99 PET Software List

Assembled, with space for 4K RAM,
For SYM, AIM, KIM A B Computers 2156908386

Other Seawell products available soon. 115 E. Stump Rd. Montgomeryville, PA 18936

6502 CONSULTING SERVICE

HAVE COM PUTER/W“_L CONSULT

CALL ERIC (216) 237-0755

16502 HARDNARE AND SOFTWARE DESIGN EXPERIENCE”
' 27

3EVIEWS ETC.

EVIEW: Programming the 6502, by Rodnay Zaks
(SYBEX, 305 pp.)

review by Jim Butterfield

The 650X community is in need of good refer-
nce and/or tutorial books on their chip. Unfor-
unately, this book doesn't make the grade,

There are too many mistakes and oversights in
he book to make it serve as a useful reference or
eaching guide. Some of the problems are relativ-
ly minor goofs that may be corrected in a future
dition: for example, page 15 notes that binary
0000000 equals a value c¢f minus zero (!), and page
81 says (twice!) that the BIT instruction uses
elative addressing.

More seriously, themtaseems to be a lack in the
.uthor's depth of understanding. Exercise 3,17
:sks the reader, "Why is the return from a sub-
‘outine so much faster than the call?" Why indeed?
'he 6502's JSR {Jump Subroutine) and RTS (return
‘rom subroutine) in fact have identical execution
ipeeds. On the same subject, Zaks suggests that a
randy way for a calling program to pass parameters
0 a subroutine is through the stack., He doesn't
rention the formidgble coding problems that this
:reates.

Zaks doesn't seem to realize the important
lifference in indexing behaviour between zero-page
ind absolute modes, namely that zero-page indexing
:an be used to achieve a negative index value.
inyway, he doesn't mention it; indeed, he makes
little mention of zero-page indexing except to
state that only the X register can be used as an
index (which is, once again, wrong).

The list of problems goes on. Several examples
are incorrect, and on at least one occasion, in-
sult is added to injury by having an explanation
of how the incorrect code works.

Perhaps the biggest problem is that Zaks
doesn't seem to like the 6502, His tutorial style
is to outline features he thinks "good” processors
should have, and then conclude that the 6502 has a
poor capability in that area. The word, "unfor-
tunately", occurs over and over again indescribing
the 6502: Unfortunately, it doesn't have both ADD
and ADC; unfortunately it can't test bits in se-
quence (whatever that is); unfortunately, the 6502
has very few internal registers; unfortunately,
only the A register can be shifted...the list goes
on.

It reaches a climax on page 182 where Zaks
first details indirect addressing on the 6502, He
does this with seven sentences criticizing the way
it's done. This is followed by, "In fairmess, it
should be noted that few microprocessors provide
any indirect addressing at all."

Faint praise indeed for one of industry's big-
gest-selling microprocessors. A beginner reading
this book might wonder whether he's made a mistake
in opting for the 6502. Nowhere does the book men-
tion the chip's speed and versatility.

Does the book have anything going for it? It
covers the instruction set quite well, with addres-
sing modes outline somewhat patchily. Many of the
coding examples are well set out and explained.
Interrupts are dealt with in a rather rough man-
ner, and support chips are passed over briefly.
These are eight pages of good appendices, and a
thorough index.

It's still hard to find material dealing with

the 6502. If you're desperate, this book will be
of some help.

28

PRODUCT REVIEW

THE SEAWELL MARKETING 16K RAM BOARD

The SEA~16 is a KIM-4 compatible 16K Static
RAM card from SEAWELL MARKETING, 315 N.W. 85th,
Seattle, WA 98117 (206) 782~9480.

The card has been designed to fit in the stand-
ard KIM-4 backplane and cannot be used in the new
HDE motherboard. The SEA-16 is a really nicely
done board with solder-masking on both sides and
labeling of all I.C.'s and DIP switches.

All of the 32 RAMs were socketed with low-
profile Augat sockets (the good ones) which seemed
indicative of the overall high quality of workman-
ship involved here.

Unfortunately, the documentation that gccomp-
anied this otherwise nicely done board consisted of
a copy of the schematic and nothing else, 1 was
left to decide for myself which way the write en-
able and bank select switches should be positioned
for proper operation. Also, one of the RAMs failed
almost immediately which indicated that this board
had nct been burned in at all,

In a phone conversation with Seawell Marketing
shortly thereafter I was assured that this board
had somehow "sneaked" past the usual burn-in pro-
cedure. It was further stated that the regular
documentation package had just been printed up and
I would receive it along with a replacement 2114
very shortly.

That was over a month ago and I still haven't
received anything.

Seawell Marketing has done an otherwise first
class job on this $325 RAM board except for the
two points that I mentioned. Maybe they'll have
gotten their act together by the time you read this.

ERIC

NEW PRODUCT

SPEAK & SPELL (T™) INTERFACE KIT

If you were wondering whether or not the new
Texas Instruments' SPEAK & SPELL learning aid could
be hooked up to a computer-wonder no lorger! For
apparently it already has been done,

After following up on an ad that was placed
in ON-LINE*, I found out that Dave Kemp of East
Coast Micro Products (1307 Beltram Ct, Odenton, MD
21113) is offering the SP-1, a bidirectional inter-
face to the Speak & Spell for $49.00.

According to the flyer, "It (the SP-1) allows
the computer to read speech data as it is being
fetched from onboard ROM by the synthesizer, and
it allows the computer to transfer data directly to
the synthesizer to produce computer generated
speech or sound effects."

I hope to be reviewing the SP-1 in an upcom-
ing issue. 1It's really exciting to consider the
possibilities of an under $100 digital speech syn-
thesizer interface.

According to the information I received, the
SP-1 will interface to a 6522 and includes some
6502 driver software (SYM).

*ON_LINRE is a computer classified ad newslet-
ter. For more info, contact Dave Beetle, publisher,
24695 Santa Cruz Hwy., Los Gatos, CA 95030

UI'\'“‘ he_\c‘\’ ‘\’.\W\Q e

#

- KIM-T EXPANSION

® KIM-4 Motherboard $119.00
8K Static RAM $169.00
8K PROM Board $165.00

® KIMSI S-100 Motherboard $165.00
8K Static RAM $197.00
32K Static RAM $599.00
64 Character/line Video $149.00

® KEM S-100 Motherboard $155.00
includes sockets for 4K 2708 on board
64 Character/line Video Module $235.00
8K Static RAM $197.50

® HDE Floppy Disk
® PROM Programmers

All items are available from stock.

JIOHNSON von 52
COMPUTER (216) 725-4560

BOX 120
ALLAMUCHY, N.J. 07820
inc. 201-362-6574

HUDSON DIGITAL ELECTRONICS INC.

JUST THINK OF IT!

YOUR KIM-1 — no longer limited to those long cassette saves and loads.

YOUR KlM'1 - Backed up by 8K static ram so conservatively designed,
well manufactured and thoroughly tested, HDE includes a
no-nonsense, unconditional, 6 months parts and labor
warranty. (Excluding misuse).

YOU R KIM-1 — Transformed into one of the most powerful 6502 develop-
ment systems available today.

HDE, INC. supports the KIM-1 with 8" and 5” single and dual drive disk systems, proto-
typing cards, card racks, desk top cabinets, motherboards, and the finest memory
board available, anywhere, at any price.

AND THIS IS JUST FOR STARTERS ..

Consider: A fast, 2 pass assembler; a complete line oriented editor; acomprehensive
text output processing system; an efficient dynamic debugging tool; and, a memory
diagnostic package so thorough it's the basis of our memory warranty.

Plus, after the sale support that you've known you deserve, but just couldn’t seem to
get — until now. -

And, HDE products are KIM-1, KIM-4 compatible. All boards include an oversized 5
volt regulator and address selection switches, in a state-of-the-art 4.5” X 6.5” format,
designed, manufactured, and tested for commercial/industrial application.

HDE products — built to be used with confidence.

AVAILABLE FROM THESE FINE DEALERS:

LONG ISLAND

JOHNSON COMPUTER PLAINSMAN MICROSYSTEMS ARESCO COMPUTER GENERAL STORE LONE STAR ELECTRONICS
Box 523 Box 1712 P.O. Box 43 103 Atlantic Avenue Box 488
Medina, Ohio 44256 Auburn, Ala. 36830 Audubon, Pa. 19407 Lynbrook, N.Y. 11563 Manchaca, Texas 78652

216-725-4560 800-633-8724 215-631-9052 516-887-1500 512-282-3570

